Course Syllabus

ECE 2B
Circuits, Devices, and Systems
4 units
(Required)

Catalog Description:
Second order circuits. Laplace transform and solution of steady state and transient circuit problems in the s-domain; Bode plots; Fourier series and transforms; filters. Transistor as a switch; load lines; simple logic gates; latches and flip-flops.

Prerequisites:
ECE 2A with a grade of C- or better; open to electrical engineering, computer engineering, and pre-computer engineering majors only.

Text, References, and Software:

Topics Covered and Course Goals:

1. **Diodes and Diode Circuits**
 a. Diode and LED I-V characteristics and Load-line analysis
 b. Approximate DC modeling (constant voltage drop model)
 c. DC circuit calculations
 d. Basic diode circuit applications (rectifiers, limiters, doublers)

2. **Laplace Transform Methods**
 a. 1st and 2nd-order circuit responses (time-constants, under/over/critical damping)
 b. Basic properties of Laplace transforms
 c. Circuit elements in the s-domain and initial conditions
 d. s-domain transfer functions
 e. Partial fraction expansions, special cases (repeated roots, complex poles)
 f. Initial/Final value theorems
 g. Finding time-domain responses of circuits use LT methods

3. **Transistors (DC biasing and Switching)**
 a. Basics of FETs and BJTs, I-V characteristics
 b. Approximate DC models
 c. DC circuit calculations, load-line analysis
d. Common DC biasing circuits (diode-connected transistor, four-resistor network)
e. Use of the transistor as a switch, logic gates
f. Analysis of switching circuits in the s-domain

4. **Frequency Response and Filters**
 a. Finding the frequency response from the s-domain transfer function
 b. Bode-plots, magnitude and phase, complex poles
 c. Basic filter building blocks (1st and 2nd-order low/high/bandpass)
 d. Series/Parallel Resonators – resonant frequency, Q, bandwidth
 e. Active filters, use of unit-gain buffers for cascading circuits

Class/Laboratory Hours:
Lecture, 3 hours; Laboratory, 3 hours.

Contribution to Criterion 5
Contributes to the one and one-half year of engineering topics, primarily engineering sciences.

Contribution to Program Outcomes:

<table>
<thead>
<tr>
<th>Course Goals</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Prepared by: Bob York Date: March 2008