A Unified Framework for
the Formal Verification of Sequential Circuits

Olivier Coudert
Jean Christophe Madre

Bull Research Center PC 62A13
68, Route de Versailles
78430 Louveciennes FRANCE

1 Introduction

Hardware description languages (HDLs) dramatically change the way
circuit designers work. These languages can be used to describe
circuits at a very high level of abstraction, which allows the designers
to specify the behavior of a circuit before realizing it. The validation
of these specifications is currently done by executing them, which is
very costly [2]. This cost motivates the research [3] [S] [7] {10] done
on the automatic verification of temporal properties of finite state
machines.

Once the design of the circuit is done, the problem is to verify that the
resulting circuit is correct with respect to its specification. Until
recently, this verification was done by simulating the circuit and its
specification on the same input sequences and by comparing their
output sequences. This verification method is very costly and
incomplete because of the large number of input sequences to
consider [2].

This paper presents a unified framework for the verification of
synchronous circuits. Within this framework the two verification
tasks presented above can be automatically performed using
algorithms -based on the same concepts. The first idea is to
manipulate sets of states and sets of transitions instead of individual
states and individual transitions. The second idea is to represent
these sets by Boolean functions and to replace operations on sets with
operations on Boolean functions.

Part 2 of the paper defines the two problems addressed here, and then
it presents the verification algorithms. It shows. that these algorithms
use the standard set operations in addition to two specific operations
called “Pre” and “Img”. Part 3 briefly explains why the basic set
operations are very efficiently performed when sets are denoted by
the typed decision graphs of their characteristic functions. Part 4
presents the new Boolean operators “Constrain” and “Restrict”, and
the function “Expand” that support efficiently the “Img” and “Pre”
operations. Part 5 gives experimental results and discusses them.

2 The Verification Algorithms

This section defines the model of sequential circuits that will be
verified, and the two verification problems addressed here. Then it
gives for both problems an algorithm based on set manipulations.

2.1 Definitions

For the sake of clarity we will consider in this paper that the
sequential circuits that must be verified are deterministic Moore
machines. Moreover we assume that these machines are completely
specified, which means that for any state of the machine, (1) the
outputs are defined, and (2) for any input pattern, the next state of the
machine is defined. This is not a limitation since, if the machine is
incompletely specified, it is possible to add a dummy state in order to
obtain a completely specified machine.

CH2924-9/90/0000/0126$01.00 © 1990 IEEE

126

A deterministic Moore machine M is defined by a 6-tuple
(Y,1,O,A, 8, Init). Y is the vector [y}, ..,y,] of Boolean state
variables of the machine: a state of M is defined by the Boolean
values of the variables yj, ..., y,. I is the vector of n boolean inputs
of the machine. O is the vector of k boolean outputs of the machine.
The output function A is a vector of k Boolean functions (one for each
output) from the set {0, 1}™into {0, 1}. The transition function d is a
vector of m Boolean functions from (0, 1}™x {0, 1} into {0, 1}.
Finally Init is the initial state of the machine.

The 6-tuple that defines a sequential circuit can be obtained either
from its gate level description or from its functional description, using
a symbolic execution process such as the one used in PRIAM [2].

2.2 Verification of Temporal Properties

The temporal formulas that the verification system takes as input are
the state formulas of the computation tree logic CTL [7]. This logic
is a formalism that was specifically developed to express properties
of the states and the computation paths of finite state systems. The
meaning of a state formula is relative to a state of the machine, which
is here defined by the values of its state variables. The 4 basic kinds
of CTL state formulas are the following:

(1) (¥1)s .., (¥,) are state formulas. For any state s, s|=y; if and
only if (iff) the value of the variable y;jis Lin the state s.

(2) If f and g are state formulas then so are the formulas (—f),

(Frgh(fveg).(feg) and(f=g).

If fis a state formula, so are the formulas EX(f) and AX(f):
s |= EX(f) iff there exists at least one input pattern p such that
&(s, p) I= £, and AX(f) =4t ~ EX(— .

If f and g are state formulas, so are the formulas E{f U g] and
A[fU g]: s = E[f U g] iff there exists at least one path (sg, sy, ...)
with o = s, such that 3i ((s; = g) A (Vj 0 <j<i= 5 =), and
si=A[fU g] iff for all paths (sg, S;,...) such that sp=s, then
Ji(s; =) A (Vi (0j<i=sil=))

The first algorithms that have been proposed to verify automatically
that some machine holds a temporal property [7] used traversal
techniques of its state-transition graph, which had to be partially or
entirely built. This limited the application of these algorithms to
relatively small machines.

3

@

The verification algorithm used here takes as inputs a machine
M= (Y, 1,0, A, d, Init) and the temporal formula f to be verified. It
recursively computes the set of states of A that satisfy the formula f
from the sets of states that satisfy its subformulas. At each step there
are only 4 basic cases to consider that correspond to the 4 basic kinds
of formulas given above. Once the set of states F that satisfy the
whole formula is obtained, to check whether (s |=f) for some state s
of % comes down to checking whether s belongs to F [3].

The sets of states that satisfy formulas of type (1) and (2) can be
computed using the basic set operations. For instance, the set of
states that satisfy the formula (y;) is {1} x {0, 1}™-1; if F and G are
the sets of states that satisfy the formulas f and g respectively, then
the set of states that satisfy the formula (fv g) is (F U G).

The other kinds of formulas are treated with the “Pre” operation,
either in one step (EX and AX formulas) or by fixed point algorithms
(EU and AU formulas). By definition,

Pre(Q, A,B) = (s/(se A)A(st(s’ pe B)},

where Q is either the existential “3” or the universal “V" quantifier.
Pre(Q, A, B) is the subset of states of A which have either at least one
successor (Q = 3) or all their successors (Q = V) in the set B. Letfbe
a formula and F be the set of states that satisfy f. The sets of states
EX and AX that satisfy EX(f) and AX(f) respectively are defined by:

EX = Pre@3, {0, 1)™, F) ey
AX = Pre(V, {0, 1})™, F) @

Let f and g be two formulas and F and G be the sets of states that
satisfy f and g respectively. The sets of states EU and AU that satisfy
the formulas E[f U g] and A[f U g] respectively are the limits of the
following converging sequences of sets (E,) and (A) [3]:

Ey = G.and Ey,, = E, UPre(3, F,Ep),)
Ag = G,and Ay = A UPr(Y, F, Ap). @

These algorithms use only the basic set operations U, N, =, in
addition with the “Pre” operation.

2.3 Comparison of Sequential Machines

The fundamental method for comparing the observable behaviors of
My = (Y, 1,0, 8;, A, Inity) and 8 = (Y, I, 0,8y, Ay, Inity) is to
check that the output ok of the product machine M= M) X M, is
equal to 1 for every valid state of 4 This machine is defined by
M=(Y,1, [0k], 3, A, Init) where Y=Y, @ Yy, (“@” is the vector
concatenation), 8= 3; @ &,, Init =Init; X Init, and A, depends on
the comparison criterion.

The correctness property given above holds for the machine M iff the
CTL state formula (- E(True U (ok = 0))) holds in its initial state Init,
so the verification algorithm presented in 2.2 can be used to compare
two machines. We give here a specific comparison algorithm that has
been shown by experience to be much more efficient than this general
algorithm. Both methods will be discussed in Part 5.

The idea used here is to compute the set Valid of all the valid states
of the machine 4 This set is the limit of the converging sequence of
sets Vy defined by the equations:

Vo = Init, and Viy; = Vi U Img (3, Vi x (0, 1}m), ®)

where Img(f, A) =4 {f(a) /a € A} is the image of the set A with
respect to the function f. Once Valid is computed, the verification
comes down to testing whether Img(A., Valid) = (1} (6). This algo-
rithm, like the one given in the previous section, uses only the basic
set operations, in addition to the “Img” operation.

3 Boolean Functions and Sets

Any subset A of {0, 1}™ can be represented by a uniqu.e Boolean
function X5 fpm {0, 1) to {0, 1}, defined by: (@)= 1if .and only
ifae A. Thé function ¥ is called the characteristic function of A.
The set operators (U, N, G, €, X) can be expressed in terms of‘ tl}e
logical operators (v, A, =, —, «»). For instance, the characteristic
function of the set A U B is Ay.(xa(y) v x8(¥))-

Typed decision graphs [1] are a compact canonical representation of
Boolean functions. They have remarkable properties that make the
symbolic manipulations on Boolean functions very efficient. Typed
decision graphs, which are binary decision diagrams {4] with typed

127

edges, are the canonical graph representation associated to Shannon's
typed canonical form [1]. By associating a unique atom to each of
the component of the cartesian product {0, 1}, any characteristic
function can be represented by a unique typed decision graph.

The correspondence mentioned above gives the computational cost of
the elementary set operations. The negation on typed decision graphs
has a null cost so this is the same for the set complementation. The
others Boolean operations have a complexity in O(/G;| X |G,)), where
|Gl is the number of vertices in the graph G, which gives the
computational cost of the corresponding elementary set operations.

There is no relation between the number of elements in a set and the
number of vertices in the graph of its characteristic function.
However there exists some subsets of {0,1}" whose graphs have
0O(2n/log(n)) vertices. Experience shows that, for most of the
machines we deal with, while the sets manipulated by the verification
algorithms are very large, the graphs of their characteristic functions
stay small. This means that the computational cost of the basic set
operations performed by the symbolic verification algorithms is low,
and that the total cost of these algorithms depends on the costs of the
operations “Pre” and “Img”.

4 The “Pre” and “Img” Operations

This part explains how the operations “Pre” and “Img” can be easily
realized when the typed decision graph of the transition relation and
of the output relation of the machine can be build [5). Then it
presents the techniques we have developed to perform these
operations when it is not possible to built these graphs, which
happens for most complex circuits.

4.1 Using the transition and the output relations

The transition relation A of the machine # is a subset of
{0, 1}mx {0, 1} {0, 1}™. For any states s and s’ of M, and for any
input pattern p, (s, p, s) belongs to A if and only if s'= 8(s, p). For
any subset A and B of {0, 1}™, the characteristic function of the set
Pre(Q, A, B) is equal to:

XPre(, A, B) = AS-(Xa(®) A (Qp 35 Xp(S) A Xa(S: P, D)
The output relation of the machine A4 noted A, is a subset of
{0, 1}mx {0, 1}X. For any state s of 4, and for any output pattem
out, (s, out) belongs to A if and only if out = A(s). The equations (5)
and (6), using the operation “Img”, can be written as:

XImg(3, Ax (0, 1)1 = AP Is XA() A Xals: P S (5
XImg(L A= MUL(ES X A(S) A XA(S, out)). (6')

Since the formula (Ix f(x)) is equivalent to (f(0) v f(1)), and the
formula (Vx f(x)) is equivalent to (f(0) A f(1)), the graphs of the
characteristic functions of Pre(Q, A, B), Img(3, A x {0, 1}®) and
Img(A, A) can be directly computed from the graphs of Xa, Xg. Xa
and x4 by eliminating the quantified atoms associated with p, s and §'.
This technique is very efficient [5], because it uses only the operators
v and A, which have been shown in Section 3 to have relatively low
computational costs. The problem is that, for complex machines, it is
not possible to build the graphs of A and A [8].

4.2 The “Restrict” and “Expand” Operators

The equations that define the “Pre” operation are the following:
Xpre(3, A, B) = As-((a(S) A Gp xp(8(s, D)), and Q)
XPre(v, A, B) = AS.(XA() A= Gp— X, P))- ®)

The graph of the function As.(@p x(3(s, p)), where ¥ is Xg or — Xp,
can be computed in two steps. The first step consists in computing
the function % o 8. Then, the quantified atoms associated to the input
pattern p are eliminated from the graph of this function.

It has been shown [4] that substituting some variable v in the graph
G, with the graph G, has a computational cost in 0(|01|2 X|Gy). In

order to compute the graph of As.Ap.(X(8,(s, p), ..., 8(S, P))), this
basic substitution process must be iterated so that all variables of
are substituted by the graphs of the corresponding components of d.
The problem is that during this composition, some intermediate
graphs can be too large to be built.

Section 4.2.1 shows that it is not necessary to build the graph of x o 8
to compute Pre(Q, A, B). It presents the function “Expand” that
avoids this construction. Section 4.2.2 presents the “Restrict”
operator that further reduces the computational cost of the “Pre”
operation by reducing the sizes of the graphs that are manipulated.

4.2.1 The function “Expand”

The idea that underlies the function “Expand” is to express the
function o 8 as a sum of K functions h, ..., hg, whose graphs have
less vertices than the graph of y 0 8. Using these functions, the term
(3p x(&(s, p))) can be rewritten into \% 3 hy(s, p))). This identity
allows us to eliminate directly the quaniified atoms associated to the
input pattern p from the graphs of the functions hy, ..., hg, and so the
graph of % o 8 does not have to be built.

Each path in the graph G of the function ¥ starting from the root and
leading to the leaf 1 defines a cube ¢; of the function x. This means
that the function ¢; o J can be taken as one function h;. The problems
are that the function % can have O(2/Cl) cubes, and that even if its
number of cubes is relatively small, many redundant computations
will be made.

The function Expand performs a top-down traversal of the graph G,
and stores in each of its vertices the graph of the function C, o §,
where the function C, is the sum of all the cubes represented by the
paths starting from the root of G and leading to v. Each time the top-
down traversal reaches the leaf 1, the function Expand produces one
of the functions h;. The function C, associated to a vertex v is
recursively compuied using the functions C,, of the vertices w that
point to v. Thanks to the sharing in the graph, partial results are
factorized and redundant computations are avoided [10].

Experience shows that the graphs of the functions hy, ..., hg generated
by the Expand operation are smaller than the graph of x 0 8. The
time needed to compute each of these functions directly depends on
the sizes of the graphs of the functions 5j- The next section presents a
Boolean operator that can be used to reduce the sizes of the graphs
used in the term (8(s, p)).

4.2.2 The Operator “I”

In the equations (7) and (8), when ¥ (s) = O the characteristic func-
tion of Pre(Q, A, B) is also equal to 0. This means that, in the term
%g(8(s, p)) that occurs in the equations (7) and (8), the transition
function & can be replaced with its restriction to the domain A.

The “Restrict” operator, noted “J”, takes as input the typed decision
graph of a boolean function f and of the characteristic function ¢ of
the set to which the function f must be restricted. The semantics of
the Restrict operator [8], is given on Shannon's canonical form in
Figure 1. In this figure, c.root is the root of Shannon's canonical form
of ¢, and (c/—a, c/a) is Shannon's expansion [1] of the function ¢ with
respect to a. The main properties of the Restrict operator [8] [10] are
expressed by the following theorems.

function restrict(f, c);
if ¢ = O then error;
if c = 1 then return f;
iff=0o0r f=1thenreturn f;
let a =c.root in {
ifc/~a=0 then return restrict(f/a, c/a);
ifc/a=0 then return restrict(f/—a, c/=a);
if f/—a = f/a then return restrict(f, c/—a v c/a);
return (—a A restrict(f/~a, c/—a)) v (a A restrict(f/a, c/a)); }

Figure 1. The Restrict Operator on Shannon's canonical form.

128

Theorem 1. For any Boolean functions f and ¢ # 0, if ¢(x) = I then
(4 o)) = fi).

Theorem 2. For any Boolean functions f and ¢ # 0, Shannon’s typed
canonical form of (f U ¢) has at most the same number of vertices as
that of f.

Theorem 2 is not true for typed decision graphs. It can happen that
the graph of (f U c) has more vertices than the graph of f. In this case
the function restrict retums the graph of f. Experience shows that this
case occurs very rarely.

4.3 Performing the “Img” Operation

The problem addressed here is to compute the characteristic function
¥ of the image of the restriction of a vectorial Boolean function
F=[f, ... f,] to a domain defined by its characteristic function 5. A
definition of ¥ is [8]:
X = ALy - Ypl@x Xa() A (A (5 &).

The term (’\j (y; & fj(x))) represents the transition relation of the
machine, which I]xas been shown to be in many cases too complex to
be computed [8]. This section presents two algorithms that can be
used to compute ¥ without computing this term.

Both algorithms are based on the “constrain” operator, noted “{”, and
work in two steps [8]. The first step common to both algorithms
consists in computing a new vectorial function F' = [f;' ... f,'] such
that Img(F, x,) = Img(F, 1). The second step then consists in
computing the characteristic function of Img(F, 1), by using co-
domain partitioning in the first algorithm and domain partitioning in
the second algorithm.

Figure 2 gives the semantics of the operator “y” [9] on Shannon's
canonical form. The operator applies on Shannon's canonical forms
of the Boolean functions f and ¢, and produces Shannon's canonical
form of the function (f { ¢). Its fundamental properties are expressed
by the following theorem [9].

Theorem 3. Let F = [f; ... f,] be a vector of functions, and ¢ be a
function different from 0. Let Flc =def [(F1 4 €). (fy 4 C)]. Then
Img(F L ¢, 1) = Img(F, c).

function cnst(f, c)
if ¢ = 0 then error;
if c = 1 then return f;
iff=0or f=1thenreturnf;
let a = c.root in {
ifc/~a=0 then return cnst(f/a, c/a);
ifc/a=0 thenreturn cnst(f/-a, c/—a);
if f/=a = f/a then return (=a A cnst(f, c/—a)) v (a A cnst(f, ¢/a));
return (—a A cnst(f/—a, c¢/—a)) v (a A cnst(f/a, c/a)); }

Figure 2. The Constrain Operator on Shannon's canonical form.

4.3.1 Co-domain Partitioning Based Algorithm

The first recursive algorithm that computes Img(F, 1) uses the
operator “y” to partition the co-domain of the vectorial function F.
The algorithm is a direct application of the following theorem.

Theorem 4. Let F,, = [f; ... f,] be a Boolean vectorial function. Then:
Img(F,, 1) = Img(F, ;1 —f,, 1)< {0} U Img(F,;if,, 1)x{I}.

The number of recursions needed to compute Img(F, 1) is bound by
the number of elements of this set. Several techniques have been
proposed to reduce this number of recursions. Vector partitioning [9]
consists in splitting the vector F into several sub-vectors of functions
which have disjoint supports of variables. In [6] it has been proposed
to use a cache where partial results obtained during previous
recursions are stored. However the exact matching used in [6] can be
replaced by an extended matching that allows us to match any vector
of k components in the cache with (k! x 2K) vectors, with a complex-

ity in O(k xlog(k)). This extended matching test is based on the
following properties.

Theorem 5. If y is the characteristic function of Img([f; ... fil, A),
then the characteristic function of Img([€;(f) ... €f)], A), where €
is the identity or the negation, is My; ... Y,] X(€1(¥1)s .. €YY

Theorem 6. If is the characteristic function of Img([fy ... fil, A),
then the characteristic function of Img([fo(1) - foyl, A), where G is a
permutation of the k first integers, is A[y; ... YA o1y -+ Yo(kp-

4.3.2 Domain Partitioning Based Algorithm

The algorithm based on domain partitioning is a direct application of
Theorem 7. The techniques described above can also be used to
reduce the number of recursions needed to compute the result. This
number is bounded by Hj If}, but we think that it is directly related to
|F], where |F| is the number of vertices in the graphs that represent F.
Note that this algorithm does not create any veriex, except for
characteristic functions.

Theorem 7. Let F = [f; ... f,] be a Boolean vectorial function. Then:
Img([f; ... £, 1) = Img([fii—a ... fy—a], 1) O Img([fyla ... fy/al, 1).

5 Experimental Results - Discussion

The algorithms are written in LISP, and the CPU times in seconds are
for a BULL DPX5000 mini computer. Figure 3 gives the CPU times
needed to compute the set of valid states of some digital circuits. For
all circuits, #in is the number of inputs, # reg the number of state
variables, depth is the number of iterations, # valid is the number of
valid states, tcoqp and tgy are the CPU times for the algorithm based
on co-domain partitioning and for the algorithm based on domain
partitioning respectively.

M #reg|#in | depth # valid teodp tap
5838 32| 35 17 17 24 2.5
mclc 11f 1 14 35 2.3 2.6
scf 81 27 16 115 6 58
5298 14| 3 19 218 29 2.8
s713 191 35 7 1544 81.7 88.2
s344 151 9 7 2625 32.7 28.6
5382 21| 3 151 8865 128 79
s444 21 3 151 8865 126 754
cbp16 16 17 2 6.5 E4 1.2 1
cbp32 | 32 33 2 4.3E9 5.7 4.5
key 56| 62 2 72E16 15.5 4.6
stage 64| 113 2 1.8E19 | > 10000 1242
sbe 28| 40 10 1.5E5 | > 10000 3530
sync 21 4 20 1469 140 154
clml 33| 13 396 3.8ES 1227 2620
clm2 321382 279 3.3 E6 8520 | > 10000
mml0 | 30| 13 4 1.8 E8 834 32
mm20 | 60| 23 4 1.9E17 | > 10000 212
mm30 | 90| 33 4 2E26 | > 10000 760

Figure 3. Valid States Computation.

There are circuits that can be treated by only one of the two
algorithms. The circuit clm2 can be treated only with co-domain
partitioning: at each step during the computation, only a few states
are reached. The MinMax [9] circuits (mm20, mm30) can be treated
only with domain partitioning: the hit ratio in the cache is very high
for this algorithm, which is not the case for the other algorithm, and
the number of states that are reached at each step is very large.

The symbolic verification algorithm of temporal properties has been
applied to the machines clm1 and Sync. The property to be proved
valid on clm1 required the computation of only one fixed point that
took 38 steps and 4000s of CPU time to be obtained. The “Restrict”
operator was very useful since it reduced the graphs used to compute
the term XB(E(S, p)) in such a way that during the iteration, none of

129

them had more than 186 vertices, while some of the graphs that
represent the transition function of clml have more than 2500
vertices. The property to be verified on Sync was Init
|= AG(OK = 1). The CPU time needed to make this verification was
4160 seconds and the fixed point was found in 9 steps. The restrict
operator was not very useful.

Note that the property AG(OK=1) can be verified using the
algorithm presented in Section 2.3 [10], and the verification times is
then the time needed to compute the valid states of Sync, which is
very much smaller. This is quite understandable since the “Pre” ope-
ration is intrinsically more complex than the “Img” operation [10].

6 Conclusion

In this paper we have shown that the two kinds of verification that are
needed to design correct sequential circuits can be treated in a unified
framework. We have presented verification algorithms that manipu-
late sets of states and sets of inputs represented by the typed decision
graphs of their characteristic functions.

Though these algorithms are very efficient they do not allow us to
deal directly with the complex circuits designed at BULL. This
means that some techniques are still needed to exploit the full power
of this kemel. These techniques include the use of abstraction
mechanisms for separating control and data, and the decomposition of
the verification task according to the circuit structure.

Acknowledgments

The author would like to thank Gary Hachtel who saved our paper
from the waste basket, and sent us some benchmark circuits.

References

[11 1. P. Billon, "Perfect Normal Forms for Discrete Functions”, BULL
Research Report N°87019, March 1987.

1. P. Billon, J. C. Madre, "Original Concepts of PRIAM, an Industrial
Tool for Efficient Formal Verification of Combinational Circuits”, in
The Fusion of Hardware Design and Verification, G. J. Milne Editor,
North Holland, 1988.

S. Bose, A. Fisher, "Automatic Verification of Synchronous Circuits
Using Symbolic Logic Simulation and Temporal Logic", in Proc. of
the IFIP International Workshop, Applied Formal Methods for
Correct VLSI Design, Leuven, November 1989.

RE. Bryant, "Graph-based Algorithms for Boolean Functions
Manipulation", IEEE Transactions on Computers, Vol C35, 1986.

S. Burch, E. M. Clarke, K. L. McMillan, "Symbolic Model
Checking: 1020 States and Beyond", in Proc. of LICS, 1990.

H. Cho, G. Hachtel, S. W. Jeong, B. Plessier, E. Schwarz, F.
Somenzi, "ATPG Aspect of FSM Verification", in Proc. of ICCAD,
Santa-Clara, U.S.A., June 1990.

E. M. Clarke, O. Grumbreg, "Research on Automatic Verification of
Finite-State Concurrent Systems”, Annual Revue Computing Science,
vol. 2, pp 269-290, 1987.

0. Coudert, C. Berthet, J. C. Madre, "Verification of Synchronous
Sequential Machines Based on Symbolic Execution”, in Proc. of the
Workshop on Automatic Verification Methods for Finite State
Systems, Grenoble, France, June 1989,

O. Coudert, C. Berthet, J. C. Madre, "Verification of Sequential
Machines Using Boolean Functional Vectors”, in Proc. of the IFIP
International Workshop, Applied Formal Methods for Correct VLSI
Design, Leuven, November 1989.

0. Coudert, J. C. Madre, C. Berthet, "Verifying Temporal Properties
of Sequential Machines without Building their State Diagrams”, to
appear in Proc. of the Workshop on Computer Aided Verification,
Rutgers, U.S.A., June 1990.

2]

[3]

4]

[51

[6]

7

(8]

[9]

[10]

