Top web design for individual publications page

Recent Publications - Jeff Moehlis

[1] Moehlis, J., Shea-Brown, E., Rabitz, H. Optimal inputs for phase models of spiking neurons. ASME Journal of Computational and Nonlinear Dynamics, 1:358-367, 2006.
[2] Kim, L., Moehlis, J. Transient growth for streak-streamwise vortex interactions. Physics Letters A, 358:431-437, 2006.
[3] Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J. D.. The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113:700-765, 2006.
[4] Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., DeMartini, B. E., Zhang, W. H.. Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. Journal of Sound and Vibration, 296:797-829, 2006.
[5] Moehlis, J.. Canards for a reduction of the Hodgkin-Huxley equations. Journal of Mathematical Biology, 52:141-153, 2006.
[6] Smith, T. R., Moehlis, J., Holmes, P.. Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0 : 1 : 2 mode interaction. Physica D-Nonlinear Phenomena, 211:347-376, 2005.
[7] Holmes, P., Shea-Brown, E., Moehlis, J., Bogacz, R., Gao, J., Aston-Jones, G., Clayton, E., Rajkowski, J., Cohen, J. D.. Optimal decisions: From neural spikes, through stochastic differential equations, to behavior. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E88A:2496-2503, 2005.
[8] Smith, T. R., Moehlis, J., Holmes, P.. Low-dimensional models for turbulent plane Couette flow in a minimal flow unit. Journal of Fluid Mechanics, 538:71-110, 2005.
[9] Moehlis, J., Faisst, H., Eckhardt, B.. Periodic orbits and chaotic sets in a low-dimensional model for shear flows. Siam Journal on Applied Dynamical Systems, 4:352-376, 2005.
[10] Smith, T. R., Moehlis, J., Holmes, P.. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: A tutorial. Nonlinear Dynamics, 41:275-307, 2005.
[11] Moehlis, J., Eckhardt, B., Faisst, H.. Fractal lifetimes in the transition to turbulence. Chaos, 14:S11-S11, 2004.
[12] Brown, E., Moehlis, J., Holmes, P., Clayton, E., Rajkowski, J., Aston-Jones, G.. The influence of spike rate and stimulus duration on noradrenergic neurons. Journal of Computational Neuroscience, 17:13-29, 2004.
[13] Moehlis, J., Faisst, H., Eckhardt, B.. A low-dimensional model for turbulent shear flows. New Journal of Physics, 6, 2004.
[14] Brown, E., Moehlis, J., Holmes, P.. On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16:673-715, 2004.
[15] Moehlis, J.. Canards in a surface oxidation reaction. Journal of Nonlinear Science, 12:319-345, 2002.
[16] Moehlis, J., Smith, T. R., Holmes, P., Faisst, H.. Models for turbulent plane Couette flow using the proper orthogonal decomposition. Physics of Fluids, 14:2493-2514, 2002.
[17] Moehlis, J.. Effect of noise on excursions to and back from infinity. Physics Letters A, 284:172-183, 2001.
[18] Moehlis, J., Smith, S. G. L.. Radiation of mixed layer near-inertial oscillations into the ocean interior. Journal of Physical Oceanography, 31:1550-1560, 2001.
[19] Moehlis, J., Knobloch, E.. Wrinkled tori and bursts due to resonant temporal forcing. Physica D-Nonlinear Phenomena, 151:99-124, 2001.
[20] Moehlis, J., Knobloch, E.. Bursts in oscillatory systems with broken D-4 symmetry. Physica D-Nonlinear Phenomena, 135:263-304, 2000.

top of page