Top web design for individual publications page
 

Recent Publications - Linda Petzold


[1] Petzold, L., Li, S. T., Cao, Y., Serban, R.. Sensitivity analysis of differential-algebraic equations and partial differential equations. Computers & Chemical Engineering, 30:1553-1559, 2006.
[2] Zheng, Z. M., Stroumpoulis, D., Parra, A., Petzold, L., Tirrell, M.. A Monte Carlo simulation study of lipid bilayer formation on hydrophilic substrates from vesicle solutions. Journal of Chemical Physics, 124, 2006.
[3] Cao, Y., Gillespie, D. T., Petzold, L. R.. Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics, 124, 2006.
[4] Cao, Y., Petzold, L.. Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems. Journal of Computational Physics, 212:6-24, 2006.
[5] Homescu, C., Petzold, L. R., Serban, R.. Error estimation for reduced-order models of dynamical systems. Siam Journal on Numerical Analysis, 43:1693-1714, 2005.
[6] El Samad, H., Khammash, M., Petzold, L., Gillespie, D.. Stochastic modelling of gene regulatory networks. International Journal of Robust and Nonlinear Control, 15:691-711, 2005.
[7] Mathew, G., Mezic, I., Petzold, L.. A multiscale measure for mixing. Physica D-Nonlinear Phenomena, 211:23-46, 2005.
[8] Cao, Y., Gillespie, D. T., Petzold, L. R.. Accelerated stochastic simulation of the stiff enzyme-substrate reaction. Journal of Chemical Physics, 123, 2005.
[9] Rathinam, M., Petzold, L. R., Cao, Y., Gillespie, D. T.. Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Modeling & Simulation, 4:867-895, 2005.
[10] Cao, Y., Gillespie, D. T., Petzold, L. R.. Avoiding negative populations in explicit Poisson tau-leaping. Journal of Chemical Physics, 123, 2005.
[11] Gray, J. R., Homescu, C., Petzold, L. R., Alkire, R. C.. Efficient solution and sensitivity analysis of partial differential-algebraic equation systems - Application to corrosion pit initiation. Journal of the Electrochemical Society, 152:B277-B285, 2005.
[12] Cao, Y., Gillespie, D., Petzold, L.. Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. Journal of Computational Physics, 206:395-411, 2005.
[13] Gunawan, R., Cao, Y., Petzold, L., Doyle, F. J.. Sensitivity analysis of discrete stochastic systems. Biophysical Journal, 88:2530-2540, 2005.
[14] Gerbaud, P., Petzold, L., Therond, P., Anderson, W. B., Evain-Brion, D., Raynaud, F.. Differential regulation of Cu, Zn- and Mn-superoxide dismutases by retinoic acid in normal and psoriatic human fibroblasts. Journal of Autoimmunity, 24:69-78, 2005.
[15] Cao, Y., Petzold, L.. A posteriori error estimation and global error control for ordinary differential equations by the adjoint method. Siam Journal on Scientific Computing, 26:359-374, 2004.
[16] Cao, Y., Gillespie, D. T., Petzold, L. R.. The slow-scale stochastic simulation algorithm. Journal of Chemical Physics, 122, 2005.
[17] Zhu, L. D., Tretheway, D., Petzold, L., Meinhart, C.. Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method. Journal of Computational Physics, 202:181-195, 2005.
[18] Cao, Y., Petzold, L. R., Rathinam, M., Gillespie, D. T.. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. Journal of Chemical Physics, 121:12169-12178, 2004.
[19] Cao, Y., Li, H., Petzold, L.. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of Chemical Physics, 121:4059-4067, 2004.
[20] Cao, Y., Petzold, L.. An error estimate for matrix equations. Applied Numerical Mathematics, 50:395-407, 2004.
[21] Li, S. T., Petzold, L.. Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. Journal of Computational Physics, 198:310-325, 2004.
[22] Rathinam, M., Petzold, L. R., Cao, Y., Gillespie, D. T.. Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. Journal of Chemical Physics, 119:12784-12794, 2003.
[23] Rathinam, M., Petzold, L. R.. A new look at proper orthogonal decomposition. Siam Journal on Numerical Analysis, 41:1893-1925, 2003.
[24] Hyman, J. M., Li, S. T., Petzold, L. R.. An adaptive moving mesh method with static rezoning for partial differential equations. Computers & Mathematics with Applications, 46:1511-1524, 2003.
[25] Gillespie, D. T., Petzold, L. R.. Improved leap-size selection for accelerated stochastic simulation. Journal of Chemical Physics, 119:8229-8234, 2003.
[26] Serban, R., Li, S. T., Petzold, L. R.. Adaptive algorithms for optimal control of time-dependent partial differential-algebraic equation systems. International Journal For Numerical Methods in Engineering, 57:1457-1469, 2003.
[27] Cao, Y., Petzold, L.. A subspace error estimate or linear systems. Siam Journal on Matrix Analysis and Applications, 24:787-801, 2003.
[28] Cao, Y., Li, S. T., Petzold, L., Serban, R.. Adjoint sensitivity analysis or differential-algebraic equations: The adjoint DAE system and its numerical solution. Siam Journal on Scientific Computing, 24:1076-1089, 2003.
[29] Cao, Y., Li, S. T., Petzold, L.. Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software. Journal of Computational and Applied Mathematics, 149:171-191, 2002.
[30] Rathinam, M., Petzold, L. R.. Dynamic iteration using reduced order models: a method for simulation of large scale modular systems. Siam Journal on Numerical Analysis, 40:1446-1474, 2002.
[31] Serban, R., Petzold, L. R.. Efficient computation of sensitivities for ordinary differential equation boundary value problems. Siam Journal on Numerical Analysis, 40:220-232, 2002.
[32] Guibourdenche, J., Bedu, A., Petzold, L., Marchand, M., Mariani-Kurdjian, P., Hurtaud-Roux, M. F., Aujard, Y., Porquet, D.. Biochemical markers of neonatal sepsis: value of procalcitonin in the emergency setting. Annals of Clinical Biochemistry, 39:130-135, 2002.
[33] Serban, R., Koon, W. S., Lo, M. W., Marsden, J. E., Petzold, L. R., Ross, S. D., Wilson, R. S.. Halo orbit mission correction maneuvers using optimal control. Automatica, 38:571-583, 2002.
[34] Mao, G. Y., Petzold, L. R.. Efficient integration over discontinuities for differential-algebraic systems. Computers & Mathematics with Applications, 43:65-79, 2002.
[35] Raha, S., Petzold, L. R.. Constraint partitioning for structure in path-constrained dynamic optimization problems. Applied Numerical Mathematics, 39:105-126, 2001.
[36] Venkatesh, P. K., Petzold, L. R., Carr, R. W., Cohen, M. H., Dean, A. M.. Variational optimisation by the solution of a series of Hamilton-Jacobi equations. Physica D, 154:15-25, 2001.
[37] Raha, S., Petzold, L. R.. Constraint partitioning for stability in path-constrained dynamic optimization problems. Siam Journal on Scientific Computing, 22:2051-2074, 2001.
[38] Taha, T., Hyman, J. M., Petzold, L., Schiesser, W.. Method of lines - Foreword. Mathematics and Computers in Simulation, 56:113-113, 2001.
[39] Serban, R., Petzold, L. R.. COOPT - a software package for optimal control of large-scale differential-algebraic equation systems. Mathematics and Computers in Simulation, 56:187-203, 2001.
[40] Im, H. G., Raja, L. L., Kee, R. J., Petzold, L. R.. A numerical study of transient ignition in a counterflow nonpremixed methane-air flame using adaptive time integration. Combustion Science and Technology, 158:341-363, 2000.
[41] Petzold, L. R., Ascher, U., Banks, H. T., Crowley, J., Gander, W., Greengard, L., Heath, M., Lumsdaine, A., Moler, C., Oden, T., Schnabel, R., Stewart, K., Trefethen, A.. Graduate education in computational science and engineering. Siam Review, 43:163-177, 2001.
[42] Li, S. T., Petzold, L.. Software and algorithms for sensitivity analysis of large-scale differential algebraic systems. Journal of Computational and Applied Mathematics, 125:131-145, 2000.
[43] Gill, P. E., Jay, L. O., Leonard, M. W., Petzold, L. R., Sharma, V.. An SQP method for the optimal control of large-scale dynamical systems. Journal of Computational and Applied Mathematics, 120:197-213, 2000.
[44] Raja, L. L., Kee, R. J., Serban, R., Petzold, L. R.. Computational algorithm for dynamic optimization of chemical vapor deposition processes in stagnation flow reactors. Journal of the Electrochemical Society, 147:2718-2726, 2000.
[45] Li, S. T., Petzold, L., Zhu, W. J.. Sensitivity analysis of differential-algebraic equations: A comparison of methods on a special problem. Applied Numerical Mathematics, 32:161-174, 2000.

top of page