Top web design for individual publications page
 

Recent Publications - Andy Teel


[1] Nesic, D., Teel, A. R.. Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model. Automatica, 42:1801-1808, 2006.
[2] Popovic, D., Jankovic, M., Magner, S., Teel, A. R.. Extremum seeking methods for optimization of variable cam timing engine operation. IEEE Transactions on Control Systems Technology, 14:398-407, 2006.
[3] Sanfelice, R. G., Goebel, R., Teel, A. R.. A feedback control motivation for generalized solutions to hybrid systems. Hybrid Systems: Computation and Control, Proceedings, 3927:522-536, 2006.
[4] Goebel, R., Teel, A. R., Hu, T. S., Lin, Z. L.. Conjugate convex Lyapunov functions for dual linear differential inclusions. IEEE Transactions on Automatic Control, 51:661-666, 2006.
[5] Teel, A. R., Zaccarian, L.. On the literature's two different definitions of uniform global asymptotic stability for nonlinear systems. Advanced Topics in Control Systems Theory, 328:285-289, 2006.
[6] Goebel, R., Teel, A. R.. Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica, 42:573-587, 2006.
[7] Galeani, S., Massimetti, M., Teel, A. R., Zaccarian, L.. Reduced order linear anti-windup augmentation for stable linear systems. International Journal of Systems Science, 37:115-127, 2006.
[8] Zurakowski, R., Teel, A. R.. A model predictive control based scheduling method for HIV therapy. Journal of Theoretical Biology, 238:368-382, 2006.
[9] Loria, A., Kelly, R., Teel, A. R.. Uniform parametric convergence in the adaptive control of mechanical systems. European Journal of Control, 11:87-100, 2005.
[10] Loria, A., Kelly, R., Teel, A. R.. Discussion on: "Uniform parametric convergence in the adaptive control of mechanical systems" - Final comments. European Journal of Control, 11:109-111, 2005.
[11] Teel, A. R., Zaccarian, L., Marcinkowski, J. J.. An anti-windup strategy for active vibration isolation systems. Control Engineering Practice, 14:17-27, 2006.
[12] Zaccarian, L., Nesic, D., Teel, A. R.. L-2 anti-windup for linear dead-time systems. Systems & Control Letters, 54:1205-1217, 2005.
[13] Kellett, C. M., Teel, A. R.. On the robustness of KL-stability for difference inclusions: Smooth discrete-time Lyapunov functions. Siam Journal on Control and Optimization, 44:777-800, 2005.
[14] Hu, T. S., Goebel, R., Teel, A. R., Lin, Z. L.. Conjugate Lyapunov functions for saturated linear systems. Automatica, 41:1949-1956, 2005.
[15] Barbu, C., Galeani, S., Teel, A. R., Zaccarian, L.. Non-linear anti-windup for manual flight control. International Journal of Control, 78:1111-1129, 2005.
[16] Hu, T. S., Teel, A. R., Lin, Z. L.. Lyapunov characterization of forced oscillations. Automatica, 41:1723-1735, 2005.
[17] Zaccarian, L., Teel, A. R.. The L-2 (l(2)) bumpless transfer problem for linear plants: Its definition 'and solution. Automatica, 41:1273-1280, 2005.
[18] Grimm, G., Messina, M. J., Tuna, S. E., Teel, A. R.. Model predictive control: For want of a local control Lyapunov function, all is not lost. IEEE Transactions on Automatic Control, 50:546-558, 2005.
[19] Messina, M. J., Tuna, S. E., Teel, A. R.. Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control. Automatica, 41:617-628, 2005.
[20] Watts, R. J., Smith, B. A., Teel, A.. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems.. Abstracts of Papers of the American Chemical Society, 228:U602-U603, 2004.
[21] Loria, A., Panteley, E., Popovic, D., Teel, A. R.. A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems. IEEE Transactions on Automatic Control, 50:183-198, 2005.
[22] Zaccarian, L., Teel, A. R.. Nonlinear scheduled anti-windup design for linear systems. IEEE Transactions on Automatic Control, 49:2055-2061, 2004.
[23] Nesic, D., Teel, A. R.. Input-to-state stability of networked control systems. Automatica, 40:2121-2128, 2004.
[24] Nesic, D., Teel, A. R.. Input-output stability properties of networked control systems. IEEE Transactions on Automatic Control, 49:1650-1667, 2004.
[25] Grimm, G., Teel, A. R., Zaccarian, L.. Linear LMI-based external anti-windup augmentation for stable linear systems. Automatica, 40:1987-1996, 2004.
[26] Grimm, G., Teel, A. R., Zaccarian, L.. Robust linear anti-windup synthesis for recovery of unconstrained performance. International Journal of Robust and Nonlinear Control, 14:1133-1168, 2004.
[27] Grimm, G., Messina, M. J., Tuna, S. E., Teel, A. R.. Examples when nonlinear model predictive control is nonrobust. Automatica, 40:1729-1738, 2004.
[28] Teel, A. R., Hespanha, J.. Examples of GES systems that can be driven to infinity by arbitrarily small additive decaying exponentials. IEEE Transactions on Automatic Control, 49:1407-1410, 2004.
[29] Kellett, C. M., Teel, A. R.. Discrete-time asymptotic controllability implies smooth control-Lyapunov function. Systems & Control Letters, 52:349-359, 2004.
[30] Kellett, C. M., Teel, A. R.. Smooth Lyapunov functions and robustness of stability for difference inclusions. Systems & Control Letters, 52:395-405, 2004.
[31] Kellett, C. M., Shim, H., Teel, A. R.. Further results on robustness of (Possibly discontinuous) sample and hold feedback. IEEE Transactions on Automatic Control, 49:1081-1089, 2004.
[32] Nesic, D., Teel, A. R.. A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Transactions on Automatic Control, 49:1103-1122, 2004.
[33] Kellett, C. M., Teel, A. R.. Weak converse Lyapunov theorems and control-Lyapunov functions. Siam Journal on Control and Optimization, 42:1934-1959, 2004.
[34] Morabito, F., Teel, A. R., Zaccarian, L.. Nonlinear antiwindup applied to Euler-Lagrange systems. IEEE Transactions on Robotics and Automation, 20:526-537, 2004.
[35] Teel, A. R.. Discrete time receding horizon optimal control: Is the stability robust?. Optimal Control, Stabilizaton and Nonsmooth Analysis, 301:3-27, 2004.
[36] Nesic, D., Teel, A. R.. Matrosov theorem for parameterized families of discrete-time systems. Automatica, 40:1025-1034, 2004.
[37] Grimm, G., Postlethwaite, I., Teel, A. R., Turner, M. C., Zaccarian, L.. Case studies using linear matrix inequalities for optimal anti-windup synthesis. European Journal of Control, 9:463-473, 2003.
[38] Bemporad, A., Teel, A. R., Zaccarian, L.. Anti-windup synthesis via sampled-data piecewise affine optimal control. Automatica, 40:549-562, 2004.
[39] Teel, A. R., Moreau, L., Nesic, D.. Input to state set stability for pulse width modulated control systems with disturbances. Systems & Control Letters, 51:23-32, 2004.
[40] Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A. R., Turner, M. C., Zaccarian, L.. Antiwindup for stable linear systems with input saturation: An LMI-based synthesis. IEEE Transactions on Automatic Control, 48:1509-1525, 2003.
[41] Teel, A. R., Moreau, L., Nesic, D.. A unified framework for input-to-state stability in systems with two time scales. IEEE Transactions on Automatic Control, 48:1526-1544, 2003.
[42] Zaccarian, L., Teel, A. R., Nesic, D.. On finite gain L (P) stability of nonlinear sampled-data systems. Systems & Control Letters, 49:201-212, 2003.
[43] Shim, H., Seo, J. H., Teel, A. R.. Nonlinear observer design via passivation of error dynamics. Automatica, 39:885-892, 2003.
[44] Shim, H., Teel, A. R.. Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback. Automatica, 39:441-454, 2003.
[45] Laila, D. S., Nesic, D., Teel, A. R.. Open- and closed-loop dissipation inequalities under sampling and controller emulation. European Journal of Control, 8:109-125, 2002.
[46] Arcak, M., Teel, A.. Input-to-state stability for a class of Lurie systems. Automatica, 38:1945-1949, 2002.
[47] Zaccarian, L., Teel, A. R.. A common framework for anti-windup, bumpless transfer and reliable designs. Automatica, 38:1735-1744, 2002.
[48] Teel, A., Panteley, E., Loria, A.. Integral characterizations of uniform asymptotic and exponential stability with applications. Mathematics of Control Signals and Systems, 15:177-201, 2002.
[49] Nesic, D., Teel, A. R.. Sampled-data control of nonlinear systems: An overview of recent results. Perspectives in Robust Control, 268:221-239, 2001.
[50] Sepulchre, R., Arcak, M., Teel, A. R.. Trading the stability of finite zeros for global stabilization of nonlinear cascade systems. IEEE Transactions on Automatic Control, 47:521-525, 2002.
[51] Panteley, E., Loria, A., Teel, A.. Relaxed persistency of excitation for uniform asymptotic stability. IEEE Transactions on Automatic Control, 46:1874-1886, 2001.
[52] Zaccarian, L., Teel, A. R.. A benchmark example for anti-windup synthesis in active vibration isolation tasks and an L-2 anti-windup solution. European Journal of Control, 6:405-420, 2000.
[53] Mulder, E. F., Kothare, M. V., Zaccarian, L., Teel, A. R.. Discussion on: 'A performance criterion for anti-windup compensators' by A. Rantzer. European Journal of Control, 6:453-454, 2000.
[54] Zaccarian, L., Teel, A. R., Mulder, E. F., Kothare, M. V., Morari, M.. Discussion on: 'Multivariable anti-windup controller synthesis using bilinear matrix inequalities' by E.F. Mulder, M. V. Kothare and M. Morari. European Journal of Control, 6:465-466, 2000.
[55] Mulder, E. F., Kothare, M. V., Zaccarian, L., Teel, A. R., De Dona, J. A., Goodwin, G. C., Seron, M. M.. Discussion on: 'Anti-windup and model predictive control: Reflections and connections' by J. A. De Dona, G. C. Goodwin and M. M. Seron. European Journal of Control, 6:478-480, 2000.
[56] Nesic, D., Teel, A. R.. Input-to-state stability for nonlinear time-varying systems via averaging. Mathematics of Control Signals and Systems, 14:257-280, 2001.
[57] Nesic, D., Teel, A. R.. Changing supply functions in input to state stable systems: The discrete-time case. IEEE Transactions on Automatic Control, 46:960-962, 2001.
[58] Ezal, K., Kokotovic, P. V., Teel, A. R., Basar, T.. Disturbance attenuating output-feedback control of nonlinear systems with local optimality. Automatica, 37:805-817, 2001.
[59] Teel, A. R., Praly, L.. A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions. Esaim-Control Optimisation and Calculus of Variations, 5:313-367, 2000.
[60] Fossen, T. I., Loria, A., Teel, A.. A theorem for UGAS and ULES of (passive) nonautonomous systems: robust control of mechanical systems and ships. International Journal of Robust and Nonlinear Control, 11:95-108, 2001.
[61] Arcak, M., Teel, A., Kokotovic, P.. Robust nonlinear control of feedforward systems with unmodeled dynamics. Automatica, 37:265-272, 2001.
[62] Teel, A. R., Peuteman, J., Aeyels, D.. Semi-global practical asymptotic stability and averaging. Systems & Control Letters, 37:329-334, 1999.
[63] Nesic, D., Teel, A. R., Sontag, E. D.. Formulas relating K L stability estimates of discrete-time and sampled-data nonlinear systems. Systems & Control Letters, 38:49-60, 1999.
[64] Nesic, D., Teel, A. R., Kokotovic, P. V.. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems & Control Letters, 38:259-270, 1999.
[65] Isidori, A., Teel, A. R., Praly, L.. A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback. Systems & Control Letters, 39:165-171, 2000.
[66] Teel, A. R., Nesic, D.. Averaging with disturbances and closeness of solutions. Systems & Control Letters, 40:317-323, 2000.
[67] Teel, A. R., Praly, L.. On assigning the derivative of a disturbance attenuation control Lyapunov function. Mathematics of Control Signals and Systems, 13:95-124, 2000.

top of page