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Course Description....

a Advanced digital VLSI design: CMOS scaling,
nanoscale issues including variability, thermal

management, interconnects, reliability

2 Non-clocked, clocked and self-timed logic
gates clocked storage elements

a High-speed components, PLLs and DLLs
0 Clock and power distribution

a Memory systems

a Signaling and 1/O design

Q Low-power design

0a Design issues with emerging devices



Textbook and References

0 Reference Books

= Design of High-Performance Microprocessor Circuits,
Chandrakasan, Bowhill and Fox (Eds.), IEEE Press.

= Modern VLSI Devices by Yuan Taur and Tak Ning, Cambridge
Univ. Press.

= Digital Integrated Circuits: A Design Perspective (Second
Edition) Jan M. Rabaey, Anantha Chandrakasan and Borivoje
Nikolic, Prentice Hall Publishing Company

» ECE 124A Text Book: CMOS VLSI Design: A Circuits and
Systems Perspective (3rd Edition), Neil H. E. Weste and David
Harris, Addison Wesley, © 2005.

Other Reference Materials

* To be posted on the class web site:
http://www.ece.ucsb.edu/courses/ECE125/125 WO09Banerjee/default.html




Prerequisites

ECE124A or equivalent
Semiconductor Physics
Device Physics
Basic Circuit Analysis (both analytical and simulation based)
Other
» Logic design
— Combinational and clocked logic, Gates, latches, flip-flops, etc.
» Fundamentals of electromagnetic theory (physics)
— Resistance, capacitance, inductance, power/energy

U 000 00



Preparation for the course

0 Computing environment and tools

= Setup computer account, and the compute environment

= Familiarize with the schematic and layout editors

= Familiarize with the parasitic extractor and circuit simulator
a Theory

= Review device physics

» Review logic design, computer architecture, and
electromagnetics

Q Projects
» You should start formalizing your project ASAP
= Must work on your own




Prerequisites-l: Basic Understanding of
the MOSFET

 Band Diagrams
|-V curves
o Static/dynamic behavior

e Parameters (process, temperature, voltage) that
Impact device behavior

* Impact on circuit parameters (delay, power, NM)



Prerequisites-ll: Implementation & Sizing
of Complex Gates

d’

» Described as: Function, K-map, Truth Table, or
propositions

e Sizing of gates to get equivalent inverter size (based
on worst case delay) ---with and without considering
Internal capacitances



Prerequisites-lIl: Circuit Level
Implementation Choices for Complex gates

* Implement a function F with
- Static CMOS
- Pass Transistors
- Pseudo-NMQOS
- Dynamic Logic (including Domino)

e Pros and Cons of each of the methods (in terms of
delay, power, area, noise margins etc.)



Prerequisites-IV: Elmore Delay

Know how to apply ElImore delay to find the delay
between any two points in a:

e Given RC tree

» Given topology of gates (find their equivalent RC...)



Prerequisites-V: Optimization of a Design

e Optimizing a design in terms of delay and power
dissipation

» Choosing optimal number and sizes to minimize the
delay for

- Inverter chain
- Gates (Logical Effort)

* Trade-off between delay and power dissipation



Prerequisites-VI: Sequential Circuits

» Design of foreground memory elements
- Latches
- Filp Flops

*Timing parameters (understand in terms of circuit
design and topology)

- setup time
- hold time

- clock skew



Prerequisites-VIl: Semiconductor Memories

» Basic Types

« SRAM (circuit level implementation...., read and
write operations, sizing issues)

« DRAM (circuit level implementation, read and write
operations, processing issues)



Introduction

2 Why is designing
digital ICs different
today than it was
before?

a Wil it change In
future?
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Moore’s law In Microprocessors
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Frequency
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Productivity Trends
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Complexity outpaces design productivity
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Challenges In Digital Design
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Microscopic Problems S Macroscopic Issues
« Ultra-high speed design u " * Time-to-Market
e Interconnect e erit»  * Millions of Gates

* High-Level Abstractions
* Reuse & IP: Portability

» Predictability

. etc.

* Noise, Crosstalk

» Reliability, Manufacturability
* Power Dissipation

» Clock distribution.

Everything Looks a Little Different
,? ...and There’'s a Lot of Them!



VLSI Design Metrics

0 How to evaluate performance of a digital
circuit (gate, block, ...)?
= Cost
» Reliability
= Scalabllity
* Robustness
= Speed (delay, operating frequency)
= Power dissipation
* Energy to perform a function



VLSI Designer’s Tasks

Q Job of VLSI designer: design a circuit block to meet
one or more objectives:

= Maximize speed, performance
= Minimize power consumption
= Minimize area
= Noise immunity (robustness)
QO How?
» Choice of circuit style (static, dynamic, etc)
= Circuit design, transistor sizing
* |nterconnect design, efficient layout



VLSI Design Challenges

Qa design challenges

= Power consumption, especially leakage
power. Also affects chip cooling.

* Noise Issues, as transistors and wires
move closer together. Design of noise-
tolerant circuits.

» Clocking: distributing high-frequency clock
with minimum of skew (difference in clock
arrival time between points on a chip)

Variablility affects all of the above.....



VLSI Design Challenges

a design challenges, continued

= Scaling: continue to make transistors
smaller. Why? Smaller transistors are
faster, can put more transistors on a die

* Integration: combining large VLSI systems
to form a “system-on-a-chip”
— Design for reuse
— Design for testability
— Advanced CAD tools required



Power Dissipation
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Power density
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Not Only Microprocessors

Cell
Phone

Digital Cellular Market
(Phones Shipped)

1996 1997 1998 1999 2000
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Digital Baseband

(data from Texas Instruments)



Historical Perspective....

Vacuum Point-Contact Planar Process CMOS p-Processor Mic roprocessor
Tubes Transisfor NMO S Technology  Technology Invented Pentiumé
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CMOS

(1) Easier control over processing (2) High circuit integration density (3) low cost (4) low power consumption

Due to technology scaling, |eakage power dissipation and associated thermal problems are increasingly becoming
major bamiers in further advancement of C MO § technology .

Technology Circuit level System level
1. Scaling 1. Gate gizing 1. Heat sink
2. Copper wiring 2. Sleep transistor 2. Packaging materials
3. Low-k dielectrics 3. Stack forcing 3. Cooling techniques
4. Variable Threshold CMOS (VTCMO 5) 4. Heat pipes or folded fin assemblies
5. Multi-Threshold CMOS (MTCMOS) 5, Refrigeration
6. Input vector modification
7. Adaptive supply and body biasing
8. Optimal Vdd and Vth selection

Y

NMOS
1) Easier control over processing (2) High circuit integration density {3) low cost (4) Lesser power dissipation than BJT (5) NMO 5
preferred over PMO § due to higher electron mobility (hence higher speed).
NIMO S integrated circuits have large static power consumption.

BJT
Bipolar junction transistors have high current drive capability and superior analog performance. This type of transistor is widely used
as an amplifier and is also a key component in oscillators, high-speed integrated circuits, and switching circuits,

Device parameters for BJT are hard to control. Power consumption of BJT is extremely high limiting its integra fion density.

Vacuum Tube

During Word War Il, urgent military requirements started to push the vacuum-tube technology. The technology had fully mafured with a
wide range of tubes—diodes, pentodes, CRT's, kly strons, and fravelingwave tubes—in highwolume manufacture. Vacuum tubes were
the key component in an array of electronic equipment that seemed to meet all conceivable information needs. Radio equipment—ARM,
FM, and microwav e—was in wide use.

Vac uum tubes had low speed, short life, high power consumption. They were bulky and fragile. These disadvantages eventually limited
their further progress.




Process, Temperature and Voltage Variations
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Key Parameter Variations

= Within-die Parameter Variations
» Channel Length (L)
» Oxide Thickness (tox)
» Temperature (T)
» Supply Voltage (Vqq) source

= Die-to-Die Parameter Variations
» Channel Length (L)

» Temperature (T)
. |lewel,ECE2S  KaustavBanejee
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Minimum feature size is scaling faster than lithography wavelength
Channel length exhibits significant amount of variations
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Impact of Device Scaling

Threshold voltage roll-off

> With technology scaling, the same amount of channel length variations result in
greater variations in threshold voltage



Impact of Static Variations
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Why On-Chip Temperature Variations
are Increasing?

Temperature map of a high-performance microprocessor
Courtesy of S. Borkar, Intel Corporation.

> Difference in power dissipation of various blocks
> Dynamic power management technigues such as clock gating
> Leakage power distribution
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Probabilistic Design
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Deterministic design technigues inadequate in the future
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New Transistors: Tri-Gate, Double Gate
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IC performance Is being dominated by interconnects

Optimal Interconnect Delay

Global Wires

Typical Gate Delay

100 120 140
Feature Size (nm)

Delay Time (ns)

K. Banerjee et al., Proc. IEEE, May 2001.
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Cu Resistivity: Effect of Scaling

Effect of Cu Diffusion Barrier
Barriers have higher resistivity
Barriers can’t be scaled below a

minimum thickness

Effect of Grain Boundary Scattering
e scattering from the G-bs
Increases effective resistivity

Effect of Electron Scattering
e scattering from the surface
further increase in effective resistivity

Problem is worse than anticipated in the ITRS roadmap

Lecture 1, ECE 225 Kaustav Banerjee




Cu Resistivity: Effect of Scaling

Based on analytical
model in

W. Steinhogl et al.,
J. Appl. Phys., 2005.

Im, Srivastava, Banerjee and Goodson, IEEE TED 2005 (in press)

Cu barrier layer, grain boundary and surface scattering leads to steep increase in Cu resistivity

Lecture 1, ECE 225
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