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Course DescriptionCourse Description……..
Advanced digital VLSI design: CMOS scaling, 
nanoscale issues including variability, thermal 
management, interconnects, reliability
Non-clocked, clocked and self-timed logic 
gates clocked storage elements 
High-speed components, PLLs and DLLs
Clock and power distribution 
Memory systems
Signaling and I/O design 
Low-power design
Design issues with emerging devices
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Textbook and ReferencesTextbook and References
Reference Books

Design of High-Performance Microprocessor Circuits, 
Chandrakasan, Bowhill and Fox (Eds.), IEEE Press.
Modern VLSI Devices by Yuan Taur and Tak Ning, Cambridge 
Univ. Press.
Digital Integrated Circuits: A Design Perspective (Second 
Edition) Jan M. Rabaey, Anantha Chandrakasan and Borivoje
Nikolic, Prentice Hall Publishing Company

ECE 124A Text Book: CMOS VLSI Design: A Circuits and 
Systems Perspective (3rd Edition), Neil H. E. Weste and David 
Harris, Addison Wesley, © 2005. 

Other Reference Materials
To be posted on the class web site:
http://www.ece.ucsb.edu/courses/ECE125/125_W09Banerjee/default.html
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PrerequisitesPrerequisites
ECE124A or equivalent
Semiconductor Physics
Device Physics 
Basic Circuit Analysis (both analytical and simulation based)
Other

Logic design
– Combinational and clocked logic, Gates, latches, flip-flops, etc.

Fundamentals of electromagnetic theory (physics)
– Resistance, capacitance, inductance, power/energy
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Preparation for the coursePreparation for the course
Computing environment and tools

Setup computer account, and the compute environment
Familiarize with the schematic and layout editors
Familiarize with the parasitic extractor and circuit simulator

Theory
Review device physics 
Review logic design, computer architecture, and 
electromagnetics

Projects
You should start formalizing your project ASAP
Must work on your own
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• Band Diagrams

• I-V curves 

• Static/dynamic behavior

• Parameters (process, temperature, voltage) that 
impact device behavior

• Impact on circuit parameters (delay, power, NM)

PrerequisitesPrerequisites--I: Basic Understanding of I: Basic Understanding of 
the MOSFETthe MOSFET
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PrerequisitesPrerequisites--II: Implementation & Sizing II: Implementation & Sizing 
of Complex Gatesof Complex Gates

• Described as: Function, K-map, Truth Table, or 
propositions

• Sizing of gates to get equivalent inverter size (based 
on worst case delay) ---with and without considering 
internal capacitances
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PrerequisitesPrerequisites--III: Circuit Level III: Circuit Level 
Implementation Choices for Complex gatesImplementation Choices for Complex gates

• Implement a function F with

- Static CMOS

- Pass Transistors

- Pseudo-NMOS

- Dynamic Logic (including Domino)

• Pros and Cons of each of the methods (in terms of 
delay, power, area, noise margins etc.)
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PrerequisitesPrerequisites--IV: Elmore DelayIV: Elmore Delay

Know how to apply Elmore delay to find the delay 
between any two points in a:

• Given RC tree 

• Given topology of gates (find their equivalent RC…)
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PrerequisitesPrerequisites--V: Optimization of a DesignV: Optimization of a Design

• Optimizing a design in terms of delay and power 
dissipation

• Choosing optimal number and sizes to minimize the 
delay for

- Inverter chain

- Gates (Logical Effort)

• Trade-off between delay and power dissipation
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PrerequisitesPrerequisites--VI: Sequential CircuitsVI: Sequential Circuits

• Design of foreground memory elements

- Latches

- Filp Flops

•Timing parameters (understand in terms of circuit 
design and topology)

- setup time

- hold time 

- clock skew
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PrerequisitesPrerequisites--VII: Semiconductor MemoriesVII: Semiconductor Memories

• Basic Types 

• SRAM (circuit level implementation…., read and 
write operations, sizing issues)

• DRAM (circuit level implementation, read and write 
operations, processing issues)
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IntroductionIntroduction

Why is designing 
digital ICs different 
today than it was 
before?
Will it change in 
future?
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MooreMoore’’s law in Microprocessorss law in Microprocessors
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FrequencyFrequency
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Productivity TrendsProductivity Trends
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Challenges in Digital DesignChallenges in Digital Design

“Microscopic Problems”
• Ultra-high speed design
• Interconnect
• Noise, Crosstalk
• Reliability, Manufacturability
• Power Dissipation
• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”
• Time-to-Market
• Millions of Gates
• High-Level Abstractions
• Reuse & IP: Portability
• Predictability
• etc.

…and There’s a Lot of Them!

∝ DSM ∝ 1/DSM

?
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VLSI Design MetricsVLSI Design Metrics

How to evaluate performance of a digital 
circuit (gate, block, …)?

Cost
Reliability
Scalability
Robustness
Speed (delay, operating frequency) 
Power dissipation
Energy to perform a function
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VLSI DesignerVLSI Designer’’s Taskss Tasks
Job of VLSI designer: design a circuit block to meet 
one or more objectives:

Maximize speed, performance
Minimize power consumption
Minimize area
Noise immunity (robustness)

How?
Choice of circuit style (static, dynamic, etc)
Circuit design, transistor sizing
Interconnect design, efficient layout
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VLSI Design ChallengesVLSI Design Challenges
design challenges

Power consumption, especially leakage 
power.  Also affects chip cooling.
Noise issues, as transistors and wires 
move closer together.  Design of noise-
tolerant circuits.
Clocking: distributing high-frequency clock 
with minimum of skew (difference in clock 
arrival time between points on a chip)

Variability affects all of the above…..
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VLSI Design ChallengesVLSI Design Challenges
design challenges, continued

Scaling: continue to make transistors 
smaller.  Why?  Smaller transistors are 
faster, can put more transistors on a die
Integration: combining large VLSI systems 
to form a “system-on-a-chip”

– Design for reuse
– Design for testability
– Advanced CAD tools required
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Power DissipationPower Dissipation
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Power densityPower density
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Not Only MicroprocessorsNot Only Microprocessors

Digital Cellular Market
(Phones Shipped)

1996  1997 1998  1999  2000

Units 48M   86M  162M  260M  435M Analog 
Baseband

Digital Baseband

(DSP + MCU)

Power
Management

Small 
Signal RF

Power
RF

(data from Texas Instruments)(data from Texas Instruments)

Cell
Phone
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Historical PerspectiveHistorical Perspective……..
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Process, Temperature and Voltage VariationsProcess, Temperature and Voltage Variations

Supply Voltage

Temp
(oC)

Core

Cache 70ºC

120ºC

Temp
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Core

Cache 70ºC

120ºC

Sub-130 nm CMOS 
Transistors

Transistor channel length

Metal Thickness

Power Supply Voltage Chip Temperature

Random Dopant 
Fluctuations
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Within-die Parameter Variations

Channel Length (L)

Oxide Thickness (tox)

Temperature (T)

Supply Voltage (Vdd)

Die-to-Die Parameter Variations

Channel Length (L)

Temperature (T)

source drain

P- substrate

N+ N+

NMOS

VDDGnd VG

L

tox

Key Parameter VariationsKey Parameter VariationsKey Parameter Variations
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Why Channel Length Variations are Increasing?Why Channel Length Variations are Increasing?
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Minimum feature size is scaling faster than lithography wavelength
Channel length exhibits significant amount of variations

(S. Borkar et al.  DAC2003)
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Threshold voltage rollThreshold voltage roll--off off 

With technology scaling, the same amount of channel length variations result in 
greater variations in threshold voltage

Impact of Device ScalingImpact of Device ScalingImpact of Device Scaling
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Why OnWhy On--Chip Temperature Variations Chip Temperature Variations 
are Increasing?are Increasing?

Temp
(oC)

Core

Cache 70ºC

120ºC

Courtesy of S. Borkar, Intel Corporation.

Difference in power dissipation of various blocks
Dynamic power management techniques such as clock gating
Leakage power distribution

Temperature map of a high-performance microprocessor
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Random Dopant Fluctuations (Intrinsic)Random Dopant Fluctuations (Intrinsic)Random Dopant Fluctuations (Intrinsic)
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DelayDelay
Path DelayPath Delay Pr
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Deterministic design techniques inadequate in the futureDeterministic design techniques inadequate in the futureDeterministic design techniques inadequate in the future
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Multi-variable design optimization for:
Yield and bin splits 
Parameter variations 
Active and leakage power
Performance 

Tomorrow:Tomorrow:
Global OptimizationGlobal Optimization

MultiMulti--variablevariable

Today:Today:
Local OptimizationLocal Optimization

Single VariableSingle Variable

Shift in Design ParadigmShift in Design ParadigmShift in Design Paradigm
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Tri-gate

WSiLg

TSi
Gate 1

Gate 2

Gate 3

Source

Drain

Improved short-channel effects
Higher ON current for lower SD Leakage

Identifying new parameters that may vary and impact circuit metrics

New Transistors: TriNew Transistors: Tri--Gate, Double GateGate, Double Gate

SourceSource
DrainDrain

GateGate

Source: IntelSource: Intel
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IC performance is being dominated by interconnects IC performance is being dominated by interconnects 

K. Banerjee et al., Proc. IEEE,  May 2001. 

Global Wires
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Cu Resistivity: Effect of Scaling
Effect of Cu Diffusion Barrier

Barriers have higher resistivity
Barriers can’t be scaled below a 

minimum thickness

Problem is worse than anticipated in the ITRS roadmap

Effect of Electron Scattering
e scattering from the surface
further increase in effective resistivity

CMP + Nitride
Deposition

Si

Dielectric

Cu

Nitride

Effect of Grain Boundary Scattering
e scattering from the G-bs
increases effective resistivity
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Cu barrier layer, grain boundary and surface scattering leads to steep increase in Cu resistivity

Im, Srivastava, Banerjee and Goodson, IEEE TED 2005 (in press)
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Cu Resistivity: Effect of Scaling



Kaustav BanerjeeLecture 1, ECE 225

Increasing Number of Repeaters Increasing Number of Repeaters Increasing Number of Repeaters 
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Increase in Cu resistivity will cause increase in size and Increase in Cu resistivity will cause increase in size and 
number of repeatersnumber of repeaters
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Other Issues….Other IssuesOther Issues……..
Frequency of signals on interconnects is rising 
rapidly
Frequency dependent impedance extraction is a 
major hurdle

Field solvers are unable to handle the complexity of 
VLSI interconnects

Need to develop models for interconnect 
geometry dependent calculation of high frequency 
impedance
Interconnect variability adds to the complexity of 
extraction….
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Reliability Issues….affects designReliability IssuesReliability Issues…….affects design.affects design
Electromigration in metal interconnects
Self-heating issues
Time-dependent dielectric breakdown
NBTI
Electrostatic discharge (ESD)


