ECE 225 High Speed Digital IC Design Lecture 1

Introduction: Nanometer Scale CMOS IC Issues

Prof. Kaustav Banerjee Electrical and Computer Engineering *E-mail: kaustav@ece.ucsb.edu*

Lecture 1, ECE 225

Course Description....

- Advanced digital VLSI design: CMOS scaling, nanoscale issues including variability, thermal management, interconnects, reliability
- Non-clocked, clocked and self-timed logic gates clocked storage elements
- □ High-speed components, PLLs and DLLs
- □ Clock and power distribution
- Memory systems
- □ Signaling and I/O design
- □ Low-power design
- Design issues with emerging devices

Textbook and References

□ Reference Books

- Design of High-Performance Microprocessor Circuits, Chandrakasan, Bowhill and Fox (Eds.), IEEE Press.
- Modern VLSI Devices by Yuan Taur and Tak Ning, Cambridge Univ. Press.
- Digital Integrated Circuits: A Design Perspective (Second Edition) Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, Prentice Hall Publishing Company
- ECE 124A Text Book: CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition), Neil H. E. Weste and David Harris, Addison Wesley, © 2005.

Other Reference Materials

To be posted on the class web site:

http://www.ece.ucsb.edu/courses/ECE125/125_W09Banerjee/default.html

- □ ECE124A or equivalent
- Semiconductor Physics
- Device Physics
- □ Basic Circuit Analysis (both analytical and simulation based)
- □ Other
 - Logic design
 - Combinational and clocked logic, Gates, latches, flip-flops, etc.
 - Fundamentals of electromagnetic theory (physics)
 - Resistance, capacitance, inductance, power/energy

Preparation for the course

- Computing environment and tools
 - Setup <u>computer account</u>, and the compute environment
 - Familiarize with the <u>schematic and layout editors</u>
 - Familiarize with the parasitic extractor and circuit simulator
- □ Theory
 - Review device physics
 - Review logic design, computer architecture, and electromagnetics
- Projects
 - You should start formalizing your project ASAP
 - Must work on your own

Lecture 1, ECE 225

Prerequisites-I: Basic Understanding of the MOSFET

- Band Diagrams
- I-V curves
- Static/dynamic behavior
- Parameters (process, temperature, voltage) that impact device behavior
- Impact on circuit parameters (delay, power, NM)

Prerequisites-II: Implementation & Sizing of Complex Gates

- Described as: Function, K-map, Truth Table, or propositions
- Sizing of gates to get equivalent inverter size (based on worst case delay) ---with and without considering internal capacitances

Prerequisites-III: Circuit Level Implementation Choices for Complex gates

• Implement a function F with

- Static CMOS

- Pass Transistors

- Pseudo-NMOS

- Dynamic Logic (including Domino)

• Pros and Cons of each of the methods (in terms of delay, power, area, noise margins etc.)

Prerequisites-IV: Elmore Delay

Know how to apply Elmore delay to find the delay between any two points in a:

- Given RC tree
- Given topology of gates (find their equivalent RC...)

Prerequisites-V: Optimization of a Design

- Optimizing a design in terms of delay and power dissipation
- Choosing optimal number and sizes to minimize the delay for
 - Inverter chain
 - Gates (Logical Effort)
- Trade-off between delay and power dissipation

Prerequisites-VI: Sequential Circuits

- Design of foreground memory elements
 - Latches
 - Filp Flops

•Timing parameters (understand in terms of circuit design and topology)

- setup time
- hold time
- clock skew

Prerequisites-VII: Semiconductor Memories

- Basic Types
- SRAM (circuit level implementation...., read and write operations, sizing issues)
- DRAM (circuit level implementation, read and write operations, processing issues)

Introduction

Why is designing digital ICs different today than it was before?

Will it change in future?

Lecture 1, ECE 225

Electronics, April 19, 1965.

Lecture 1, ECE 225

Moore's law in Microprocessors

Lecture 1, ECE 225

Productivity Trends

Complexity outpaces design productivity

Courtesy, ITRS Roadmap

Lecture 1, ECE 225

Challenges in Digital Design

\propto DSM

"Microscopic Problems"

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

Everything Looks a Little Different

7

∞ **1/DSM**

"Macroscopic Issues"

- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse & IP: Portability
- Predictability
- etc.

...and There's a Lot of Them!

VLSI Design Metrics

How to evaluate performance of a digital circuit (gate, block, ...)?

- Cost
- Reliability
- Scalability
- Robustness
- Speed (delay, operating frequency)
- Power dissipation
- Energy to perform a function

VLSI Designer's Tasks

Job of VLSI designer: design a circuit block to meet one or more objectives:

- Maximize speed, performance
- Minimize power consumption
- Minimize area
- Noise immunity (robustness)

□ How?

- Choice of circuit style (static, dynamic, etc)
- Circuit design, transistor sizing
- Interconnect design, efficient layout

VLSI Design Challenges

design challenges

- Power consumption, especially leakage power. Also affects chip cooling.
- Noise issues, as transistors and wires move closer together. Design of noisetolerant circuits.
- Clocking: distributing high-frequency clock with minimum of skew (difference in clock arrival time between points on a chip)

Variability affects all of the above.....

VLSI Design Challenges

design challenges, continued

- Scaling: continue to make transistors smaller. Why? Smaller transistors are faster, can put more transistors on a die
- Integration: combining large VLSI systems to form a "system-on-a-chip"
 - Design for reuse
 - Design for testability
 - Advanced CAD tools required

Power Dissipation

Lead Microprocessors power continues to increase

Lecture 1, ECE 225

Power density

Not Only Microprocessors

Cell Phone

Digital Cellular Market (Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M

(data from Texas Instruments)

Lecture 1, ECE 225

Historical Perspective....

Lecture 1, ECE 225

Process, Temperature and Voltage Variations

Lecture 1, ECE 225

Key Parameter Variations

- Within-die Parameter Variations
 - Channel Length (L)
 - > Oxide Thickness (tox)
 - > Temperature (T)
 - ➤ Supply Voltage (V_{dd})

- Die-to-Die Parameter Variations
 - Channel Length (L)
 - Temperature (T)

Lecture 1, ECE 225

Why Channel Length Variations are Increasing?

- Minimum feature size is scaling faster than lithography wavelength
- Channel length exhibits significant amount of variations

Threshold voltage roll-off

With technology scaling, the same amount of channel length variations result in greater variations in threshold voltage

Lecture 1, ECE 225

Impact of Static Variations

Why On-Chip Temperature Variations are Increasing?

Temperature map of a high-performance microprocessor Courtesy of S. Borkar, Intel Corporation.

- > Difference in power dissipation of various blocks
- > Dynamic power management techniques such as clock gating
- Leakage power distribution

Lecture 1, ECE 225

Random Dopant Fluctuations (Intrinsic)

Lecture 1, ECE 225

Lecture 1, ECE 225

Shift in Design Paradigm

Multi-variable design optimization for:

- Yield and bin splits
- Parameter variations
- Active and leakage power
- Performance

Today: Local Optimization Single Variable **Tomorrow:** Global Optimization Multi-variable

New Transistors: Tri-Gate, Double Gate

Improved short-channel effects Higher ON current for lower SD Leakage

Identifying new parameters that may vary and impact circuit metrics

Lecture 1, ECE 225

IC performance is being dominated by interconnects

K. Banerjee et al., Proc. IEEE, May 2001.

Lecture 1, ECE 225

Cu Resistivity: Effect of Scaling

Effect of Cu Diffusion Barrier

Barriers have higher resistivity
Barriers can't be scaled below a minimum thickness

Effect of Grain Boundary Scattering

- e scattering from the G-bs
- increases effective resistivity

Effect of Electron Scattering

- e scattering from the surface
- further increase in effective resistivity

Cu Dielectric Si

Problem is worse than anticipated in the ITRS roadmap

Lecture 1, ECE 225

Cu Resistivity: Effect of Scaling

Im, Srivastava, Banerjee and Goodson, IEEE TED 2005 (in press)

Cu barrier layer, grain boundary and surface scattering leads to steep increase in Cu resistivity

Lecture 1, ECE 225

Increasing Number of Repeaters

number of repeaters

Lecture 1, ECE 225

Other Issues....

- Frequency of signals on interconnects is rising rapidly
- Frequency dependent impedance extraction is a major hurdle
 - Field solvers are unable to handle the complexity of VLSI interconnects
- Need to develop models for interconnect geometry dependent calculation of high frequency impedance
- Interconnect variability adds to the complexity of extraction....

Reliability Issues....affects design

- Electromigration in metal interconnects
- Self-heating issues
- Time-dependent dielectric breakdown
- > NBTI
- Electrostatic discharge (ESD)