UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Electrical and Computer Engineering

Homework 2 – due October 31, 2018 by 5:00pm

1. A student goes into lab to make a Hall measurement. She applies an x directed electric field and a z directed magnetic field to her sample, and then measures the y directed Hall voltage between points A and B. However, points A and B are misaligned on the x axis, with a separation Δx . This separation causes an additional voltage between the contacts; therefore, the voltage that she measures is not the Hall voltage.

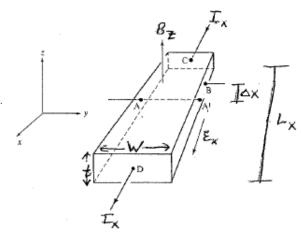


FIG. 1: Hall measurement setup

- (a) Suggest a simple procedure to get the correct Hall voltage from this setup, if the sample is *n*-type. Aligning the contacts is not an option.
- (b) Repeat part (a) for *p*-type.
- 2. An *n*-type silicon sample with $n_0 = 4 \times 10^{16}$ cm⁻³ is excited with a pulse of light at t = 0 which results in an excess carrier concentration of 1×10^{14} EHP/cm³.
 - (a) If the hole lifetime $\tau_p = 1 \,\mu$ s, find an expression for the hole concentration as a function of time p(t).
 - (b) What is the hole concentration after one hole lifetime (τ_p) has elapsed?

- 3. A silicon sample with 10^{17} cm⁻³ donors is optically excited by a laser such that 10^{20} cm⁻³ electronhole pairs (EHPs) are generated per second uniformly in the sample. The laser causes the sample to heat up to 450 K. Find the positions of the quasi-Fermi levels, and draw a band diagram indicating their positions. Also find the change in conductivity of the sample upon shining the light. Assume the electron and hole lifetimes are both 10 μ s, $D_p = 12$ cm²/s, $D_n = 36$ cm²/s, $n_i = 1.5 \times 10^{10}$ cm⁻³ at 300 K, and $n_i = 10^{14}$ cm⁻³ at 450 K.
- 4. The current required to feed the hole injection at x = 0 in Streetman Fig. 4-17 is obtained by evaluating the following equation at x = 0:

$$J_p(x) = -qD_p \frac{dp}{dx} = -qD_p \frac{d\delta p}{dx} = q \frac{D_p}{L_p} \Delta p e^{-x/L_p} = q \frac{D_p}{L_p} \delta p(x)$$

The result is $I_p(x = 0) = qAD_p\Delta p/L_p$. Show that this current can be calculated by integrating the charge stored in the steady state hole distribution $\delta p(x)$ and then dividing by the average hole lifetime τ_p . Explain why this approach gives us the correct expression for $I_p(x = 0)$.

5. Reading Assignment: Streetman: Ch. 3 and 4 (all)