UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Electrical and Computer Engineering

Homework 3 - due November 6, 2018 by 5:00pm

- 1. Electrons are injected into a p-type semiconductor slab which is 5 microns long in such a way that the electron concentration varies linearly from 10²⁰ cm⁻³ on the left to 0 on the right. If the mobility of the electrons is 500 cm²/V·s and electrons are continuously supplied to maintain this profile, assuming electric fields are negligible, what is the current density flowing through the slab?
- 2. We have seen that when an entire piece of n-type semiconductor is under constant illumination by a light source which creates electron-hole pairs at a rate g_{op} throughout the semiconductor, the steady-state minority carrier concentration (i.e., hole concentration p) is given by $p = g_{op}\tau_p$, where τ_p is the hole carrier lifetime. Assume a silicon sample is doped with a concentration $N_D = 10^{15}$ cm⁻³ of shallow donors. Prior to time t = 0, the sample is at thermal equilibrium. Starting at time t = 0, the sample is illuminated constantly by a light source which generates electron-hole pairs at a rate $g_{op} = 10^{16}$ EHP/(cm³·s) throughout the sample. If the hole carrier lifetime $\tau_p = 1 \ \mu s$, calculate (a) the steady-state hole concentration p_{fin} , (b) the time required for p to increase from its equilibrium value to $(0.1)p_{fin}$, and (c) the time required for p to increase from its equilibrium value to $(0.9)p_{fin}$.
- 3. We continuously shine light at the surface (x = 0) of a p-type semiconductor, generating 10^{20} EHP/(cm³·s) at the surface only. The excess EHPs diffuse into the sample, and the light also causes the entire sample to heat up to a temperature of 500 K. If the minority carrier lifetime in the sample is 200 ns (for both electrons and holes), the electron mobility is 2000 cm²/V·s, and the hole mobility is 500 cm²/V·s, calculate the electron diffusion current density 20 microns from the surface.
- 4. An abrupt Si *p*-*n* junction has $N_D = 10^{16}$ cm⁻³ on the *n* side and $N_A = 10^{16}$ cm⁻³ on the *p* side. For Si at room temperature, $E_G = 1.1$ eV, $N_C = 2.8 \times 10^{19}$ cm⁻³, and $N_V = 1.8 \times 10^{19}$ cm⁻³.
 - (a) Calculate the position of the Fermi level at 300 K in the bulk *n* and *p* regions (i.e., calculate E_C-E_F in the bulk *n* region and E_F-E_V in the bulk *p* region).
 - (b) Draw the equilibrium band diagram for the junction. Determine the built-in potential V_{bi} from the diagram.
- 5. Reading Assignment: *Streetman*: Ch. 4 (all) and Ch. 5 (sections 5.2 and 5.3)