UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Electrical and Computer Engineering

Homework 5 – due December 7, 2018 by 5:00pm

- 1. A Si *n-p-n* BJT has emitter, base and collector doping levels of 10^{19} cm⁻³, $5x10^{18}$ cm⁻³, and 10^{17} cm⁻³, respectively. It is biased in the normal active mode, with a base-emitter voltage V_{BE} = 1V and a collector-emitter voltage V_{CE} = 4V. During operation, the current through the device causes is to heat up to 400 K, such that $n_i = 10^{12}$ cm⁻³, and $\varepsilon_r = 15$. Assume electron and hole mobilities of 500 and 100 cm²/V-s, respectively, in the emitter, and 800 and 250 cm²/V-s, respectively, in the base. Assume the minority carrier lifetimes are 1 ns everywhere. If the neutral base width is 500 nm and the neutral emitter is 3 µm wide, calculate the emitter current density J_E , the emitter injection efficiency γ , and the base transport factor α_T . Qualitatively sketch the device structure showing the minority carrier concentrations in the emitter and the base, and sketch the band diagram under bias below it.
- 2. Problem 7.20 in Streetman.
- 3. For the BJT in the previous problem, calculate γ , α_T , β , I_E , I_B , and I_C for the two values of V_{EB} .
- 4. Reading Assignment: Streetman: Ch. 7 (sections 7.1-7.2 and 7.4-7.6)