ECE132 Winter 2018: Homework 1 Solution

P1. Calculate the approximate donor binding energy for $\mathrm{GaAs}\left(\epsilon_{r}=13.2\right.$, $\left.m_{n}{ }^{*}=0.067 m_{0}\right)$.

We can assume hydrogen like orbit to calculate the binding energy:
For $\mathrm{n}=1$:

$$
\begin{gathered}
\mathrm{E}=\frac{\mathrm{mq}^{4}}{8 *\left(\epsilon_{0} \epsilon_{\mathrm{r}}\right)^{2} h^{2}} \\
m=0.067 * 9.11 * 10^{-31} \mathrm{~kg} \\
\epsilon_{0}=8.854 * 10^{-12} \mathrm{~F} / \mathrm{m} \\
\epsilon_{r}=13.2 \\
h=6.63 * 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
\end{gathered}
$$

So, we can calculate:

$$
\begin{gathered}
\mathrm{E}=\frac{\mathrm{mq}^{4}}{8 *\left(\epsilon_{0} \epsilon_{\mathrm{r}}\right)^{2} h^{2}}=\frac{0.067 * 9.11 * 10^{-31} \mathrm{~kg} *\left(1.6 * 10^{-19} \mathrm{C}\right)^{2}}{8 *\left(13.2 * 8.854 * \frac{10^{-12} \mathrm{~F}}{m}\right)^{2} * 6.63 * 10^{-34} \mathrm{~J} \cdot \mathrm{~s}} \\
E=8.327 * 10^{-22} \mathrm{~J}=5.204 \mathrm{meV}
\end{gathered}
$$

P2. An unknown semiconductor has $E g=1.1 \mathrm{eV}$ and $N c=N v$. It is doped with $10^{15} \mathrm{~cm}^{-3}$ donors, where the donor level is 0.2 eV below E_{c}. Given that E_{F} is 0.25 eV below E_{c}, calculate n_{i} and the concentration of electrons and holes in the semiconductor at 300 K .

$$
N_{d}=10^{15} \mathrm{~cm}^{-3} \quad \text { donor concentration }
$$

$$
1-f\left(E_{D}\right) \quad \text { percent of donors which are ionized }
$$

$$
\begin{gathered}
n=N_{d} *\left(1-f\left(E_{D}\right)\right) \\
f\left(E_{D}\right)=\frac{1}{1+e^{\frac{E_{D}-E_{F}}{k T}}}=\frac{1}{1+e^{\left(\frac{0.05}{0.0259}\right)}}=0.1267 \\
n=10^{15} *(1-0.1267)=8.73 * 10^{14} \mathrm{~cm}^{-3} \\
n=N_{C} \mathrm{e}^{\left(-\frac{E_{C}-E_{F}}{k T}\right)} \\
N_{C}=n * e^{\frac{E_{C}-E_{F}}{k T}}=8.73 * 10^{14} \mathrm{~cm}^{-3} * e^{\frac{0.25}{0.259}} \\
N_{C}=1.35 * 10^{19} \mathrm{~cm}^{-3} \\
N_{C}=N_{V}=1.36 * 10^{19} \mathrm{~cm}^{-3} \\
P=N_{V} e^{-\frac{E_{F}-E_{V}}{k T}}=\left(1.35 * 10^{-19} \mathrm{~cm}^{-3}\right) * e^{-\frac{0.85}{0.259}} \\
P=7.60 * 10^{4} \mathrm{~cm}^{-3} \\
n_{i}=\sqrt{n * p}=8.15 * 10^{9} \mathrm{~cm}^{-3}
\end{gathered}
$$

P3. Calculate the bandgap of Si from $n_{i}=\sqrt{N_{C} N_{V}} e^{-\frac{E g}{2 k T}}$ and from the plot of n_{i} vs. 1000/T (see Fig. 3-17 in Streetman). [Hint: The slope cannot be measured directly from a semilogarithmic plot; read the values from two points on the plot and take the natural logarithm as needed for the solution.]

$$
\begin{gathered}
n_{i}=\sqrt{N_{C} N_{V}} e^{-\frac{E_{g}}{2 k T}} \\
\ln \left(n_{i}\right)=\ln \left(\sqrt{N_{C} N_{V}}\right)-\frac{E_{g}}{2 k T}
\end{gathered}
$$

Pick two values of n_{i} from the plot at two different temperatures, we get:

$$
\begin{aligned}
& \ln \left(n_{i 1}\right)=\ln \left(\sqrt{N_{C} N_{V}}\right)-\frac{E_{g}}{2 k T_{1}} \quad \text { eq. } 1 \\
& \ln \left(n_{i 2}\right)=\ln \left(\sqrt{N_{C} N_{V}}\right)-\frac{E_{g}}{2 k T_{2}} \quad \text { eq. } 2
\end{aligned}
$$

eq. 1 - eq. 2 we get:

$$
\begin{gathered}
\ln \left(n_{i 1}\right)-\ln \left(n_{i 2}\right)=\frac{E_{g}}{2 k}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
E_{g}=\frac{2 k}{\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)} \ln \left(\frac{n_{i 1}}{n_{i 2}}\right)
\end{gathered}
$$

From Figure 3.17:

$$
\begin{array}{ll}
n_{i 1}=3 * 10^{4} & \frac{1}{T_{1}}=2 * 10^{-3}\left(\frac{1}{K}\right) \\
n_{i 2}=10^{8} & \frac{1}{T_{2}}=4 * 10^{-3}\left(\frac{1}{K}\right)
\end{array}
$$

Solving for Eg:

$$
E_{g}=1.286 \mathrm{eV}
$$

Result is off from the known value of Eg since we have neglected the temperature dependence of $N c, N v$.

P4. (a) Show that the minimum conductivity of a semiconductor sample occurs when $n_{0}=\frac{n_{i \sqrt{\mu}}}{\mu_{n}}$ [Hint: Begin with $J_{x}=\left(n \mu_{n}+p \mu_{p}\right) \mathcal{E}_{x}=\sigma \mathfrak{E}_{x}$, and apply $n_{0} p_{0}=n_{i}{ }^{2}$.
(b) What is the expression for the minimum conductivity $\sigma_{\min }$?
(c) Calculate $\sigma_{\text {min }}$ for Si at 300 K and compare with the intrinsic conductivity.
(a)

$$
\begin{gathered}
\sigma=q\left(n * \mu_{n}+p * \mu_{p}\right)=q\left(n * \mu_{n}+\frac{n_{i}^{2}}{n} * \mu_{p}\right) \\
\frac{\delta \sigma}{\delta n}=q\left(\mu_{n}-\frac{n_{i}^{2} \mu_{p}}{n^{2}}\right) \\
\operatorname{Set} \frac{\delta \sigma}{\delta n}=0 \\
n^{2}=\frac{n_{1}^{2} \mu_{p}}{\mu_{n}}=>n=n_{i} \sqrt{\frac{\mu_{p}}{\mu_{n}}}
\end{gathered}
$$

(b) For minimum conductivity $\sigma_{\min }: n_{o}=n_{i} \sqrt{\frac{\mu_{p}}{\mu_{n}}}$ and we can get:

$$
\sigma_{\min }=q\left(n_{i} \sqrt{\mu_{n} \mu_{p}}+n_{i} \sqrt{\mu_{n} \mu_{p}}\right)=2 q n_{i} \sqrt{\mu_{n} \mu_{p}}
$$

(c) For Si at 300 K:

$$
\begin{gathered}
n_{i}=1.5 * 10^{10} \mathrm{~cm}^{-3} \\
\mu_{n}=1350 \frac{\mathrm{~cm}^{2}}{V * s} \\
\mu_{p}=480 \frac{\mathrm{~cm}^{2}}{V * s} \\
\sigma_{\min }=3.86 * 10^{-6} \frac{1}{\Omega * \mathrm{~cm}} \\
\sigma=q\left(n_{i} \mu_{n}+p_{i} \mu_{p}\right)
\end{gathered}
$$

$$
\begin{gathered}
n_{i}=p_{i} \\
\sigma=4.4 * 10^{-6} \frac{1}{\Omega * c m}
\end{gathered}
$$

P5: (a) A silicon sample is doped with $3 \times 10^{16} \mathrm{~cm}^{-3}$ boron atoms and a certain number of shallow donors. The Fermi level is 0.38 eV above E_{i} at 300 K . What is the donor concentration N_{d} ?
(b) A silicon sample contains $10^{16} \mathrm{~cm}^{-3}$ Indium (In) acceptor atoms and a certain number of shallow donors. The In acceptor level is 0.16 eV above E_{v}, and E_{F} is 0.26 eV above E_{v} at 300 K . How many In atoms $\left(\mathrm{cm}^{-3}\right)$ are un-ionized (i.e., neutral)?
(a)

$$
\begin{gathered}
n_{0}=n_{i} e^{\frac{E_{F}-E_{i}}{k T}}=1.5 * 10^{10} e^{\frac{0.38}{0.259}} \\
n_{o}=3.54 * 10^{16}
\end{gathered}
$$

Since the semiconductor is electrostatically neutral:

$$
p_{0}+N_{d}^{+}=n_{0}+N_{a}^{-}
$$

Since the sample is n-type:

$$
\begin{gathered}
n_{0} \gg p_{o} \\
N_{d}=n_{0}+N_{a}(\text { Assume all the impurities are ionized }) \\
N_{d}=n_{0}+N_{a}=3.54 * 10^{16}+3 * 10^{16} \\
N_{d}=6.54 \times 10^{16} \mathrm{~cm}^{-3}
\end{gathered}
$$

(b) The occupation probability of an energy level is given by:

$$
\begin{gathered}
f\left(E_{a}\right)=\frac{1}{1+e\left(\frac{E_{a}-E_{F}}{k T}\right)} \\
f\left(E_{a}\right)=\frac{1}{1+e^{\frac{0.16-0.26}{k T}}} \\
f\left(E_{a}\right)=0.9793
\end{gathered}
$$

The Probability of not being occupied number of In atoms are not Ionized:

$$
\begin{aligned}
p_{\text {non-ionized }} & =1-f\left(E_{a}\right) \\
p_{\text {non-ionized }} & =0.020613
\end{aligned}
$$

$\#$ of non-ionized In atoms $=\left(p_{\text {non-ionized }}\right) * 10^{16}=2.06 * 10^{14} \mathrm{~cm}^{-3}$

