
Homework 4 Solutions: 
 
 
PROBLEM 1:  An abrupt Si p+-n diode has 𝑁𝐷 = 1016 cm-3 on the n side and 𝑁𝐴 = 1017 cm-3 on 
the p side.  For Si at room temperature, EG = 1.1 eV, NC = 2.8 x 1019 cm-3, and NV = 1.8 x 1019 cm-

3.  Assume the minority carrier lifetime is 8 s (for both electrons and holes), the electron 
mobility is 1400 cm2/V·s, and the hole mobility is 500 cm2/V·s. 

 

PART A: Find the depletion region width under zero bias on the p-side (wp0) and on the n-side 
(wn0), and the total depletion width wtot,0.  

𝑉0 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝑁𝑎𝑁𝑑

𝑛𝑖
2 ) = 0.0259 ∗ ln (

1033

2.25 ∗ 1020
) = 0.754 𝑉 

 

𝑊𝑡𝑜𝑡(𝑉𝐴) = √(
2𝜖

𝑞
(

1

𝑁𝑎
+

1

𝑁𝑑
) (𝑉𝑜 − 𝑉𝐴)) 

 

𝜖𝑆𝑖 = 11.7𝜖𝑜 = 11.7 ∗ 8.85 ∗ 10−14 = 1.04 ∗ 10−12𝐹/𝑐𝑚   

 

𝑊𝑡𝑜𝑡 = √
2 ∗ 1.04 ∗ 10−12𝐹/𝑐𝑚

1.6 ∗ 10−19 𝐶
∗ (

1

1016 𝑐𝑚−3
+

1

1017 𝑐𝑚−3
) ∗ (𝑉𝑜 − 𝑉𝐴) 

 

= (3.77 ∗ 10−5 𝑐𝑚 ∙ 𝑉−1/2) ∗ √𝑉𝑜 − 𝑉𝐴 = (0.377 𝜇𝑚 ∙ 𝑉−1/2) ∗ √𝑉𝑜 − 𝑉𝐴 

 
  



At VA = 0:  

 
 

PART B:  If a forward bias of 0.2 V is applied, find the resulting depletion widths (wp, wn, and 
wtot), the electron current density Jn through the depletion region, the hole current density Jp 
through the depletion region, and the total current density Jtot through the diode. 

 
At VA = 0.2 V:  

 
 

𝐽𝑛 =
𝑞𝐷𝑛𝑛𝑝

𝐿𝑛
(𝑒𝑞𝑉𝐴/𝑘𝑇 − 1)                          𝐽𝑝 =

𝑞𝐷𝑝𝑝𝑛

𝐿𝑝
(𝑒𝑞𝑉𝐴/𝑘𝑇 − 1) 

 

𝐷𝑛 =
𝑘𝑇

𝑞
𝜇𝑛 = 36.3 

𝑐𝑚2

𝑠
                         𝐷𝑝 =

𝑘𝑇

𝑞
𝜇𝑝 = 12.95 

𝑐𝑚2

𝑠
 

 

𝐿𝑛 = √𝐷𝑛𝜏𝑛 = 1.70 ∗ 10−2 𝑐𝑚                   𝐿𝑝 = √𝐷𝑝𝜏𝑝 = 1.02 ∗ 10−2 𝑐𝑚 

 

𝑛𝑝 =
𝑛𝑖

2

𝑁𝐴
= 2.25 ∗ 103𝑐𝑚−3                            𝑝𝑛 =

𝑛𝑖
2

𝑁𝐷
= 2.25 ∗ 104𝑐𝑚−3 

 

𝑊𝑡𝑜𝑡(0 𝑉) = (0.377 𝜇𝑚 ∙ 𝑉−
1
2)√0.754 𝑉 = 0.33 𝜇𝑚 

 

𝑥𝑝 =
𝑊 ∗ 𝑁𝑑

𝑁𝑎 + 𝑁𝑑
= 0.33 ∗

1016

1.1 ∗ 1017 
= 0.03 𝜇𝑚  

 

𝑥𝑛 =
𝑊 ∗ 𝑁𝑎

𝑁𝑎 + 𝑁𝑑
= 0.33 ∗

1017

1.1 ∗ 1017 
= 0.30 𝜇𝑚 

 

𝑊𝑡𝑜𝑡(0.2 𝑉) = (0.377 𝜇𝑚 ∙ 𝑉−
1
2)√0.754 𝑉 − 0.2 𝑉 = 0.28 𝜇𝑚 

 

𝑥𝑝 =
𝑊 ∗ 𝑁𝑑

𝑁𝑎 + 𝑁𝑑
= 0.28 ∗

1016

1.1 ∗ 1017 
= 0.026 𝜇𝑚  

 

𝑥𝑛 =
𝑊 ∗ 𝑁𝑎

𝑁𝑎 + 𝑁𝑑
= 0.28 ∗

1017

1.1 ∗ 1017 
= 0.255 𝜇𝑚 

 



 
 

  

𝐽𝑛 = (7.7 × 10−13 𝐴/𝑐𝑚2)(𝑒 .2/.0259 − 1) = 1.7 × 10−9 𝐴/𝑐𝑚2 

 

𝐽𝑝 = (4.6 × 10−12 𝐴/𝑐𝑚2)(𝑒 .2/.0259 − 1) = 1.02 × 10−8 𝐴/𝑐𝑚2 

 
𝐽𝑡𝑜𝑡 = 𝐽𝑛 + 𝐽𝑝 = 1.2 × 10−8 𝐴/𝑐𝑚2 

 



Problem 2:  

𝐖 = 𝐴 ∗ √
𝑁𝐴 + 𝑁𝐷

𝑁𝐴𝑁𝐷
             𝐴 = √

2𝜖

𝑞
(𝑉0 − 𝑉𝐴) 

 
PART A:  

In Problem 1, 𝑁𝐷 = 0.1𝑁𝐴. 
 

𝐼𝑓 𝑵𝑫,𝒏𝒆𝒘 = 𝟐𝑵𝑫  →  𝑵𝑫,𝒏𝒆𝒘 = 𝟎. 𝟐𝑵𝑨 
 

𝑊 =  A ∗ √
1.1NA

0.1𝑁𝐴
2               𝑊𝑛𝑒𝑤 = 𝐴 ∗ √

1.2𝑁𝐴

0.2𝑁𝐴
2 

𝑊𝑛𝑒𝑤

𝑊
= √

6

11
= 73.9% 

 
 
 
 

𝐼𝑓 𝑵𝑨,𝒏𝒆𝒘 = 𝟐𝑵𝑨  →  𝑵𝑨,𝒏𝒆𝒘 = 𝟐𝟎𝑵𝑫 
 

𝑊 =  A ∗ √
11ND

10𝑁𝐷
2               𝑊𝑛𝑒𝑤 = 𝐴 ∗ √

21𝑁𝐷

20𝑁𝐷
2 

𝑊𝑛𝑒𝑤

𝑊
= √

21

22
= 97.7% 

 
 
 
 
 
PART B:  

N doping is increased by a factor of 2  

Pnew =
1

2
𝑃𝑛 = 1.125 ∗ 104𝑐𝑚−3 

J = q(4.8 ∗ 106 + 14.325 ∗ 106) = 19.125 ∗ 106 ∗ 𝑞 = 3.06 ∗ 10−16 𝐴/𝑐𝑚2 

∆𝑊

𝑊
=  −26.1%               

∆𝑊

𝑊
=  −2.3%               

Jnew

J
=

3.06

5.352
= 57.2% 

 
∆J

J
= −42.8% 

 



P doping is increased by a factor of 2 

Nnew =
1

2
𝑛𝑝 = 1.125 ∗ 103𝑐𝑚−3 

J = q(2.4 ∗ 106 + 28.65 ∗ 106) = 31.05 ∗ 106 ∗ 𝑞 = 4.968 ∗ 10−12 𝐴/𝑐𝑚2 

 
PART C:  

As seen above, varying the doping on the heavily doped side only causes very 
small changes in the depletion width and current density in the diode, whereas varying 
the doping on the lightly doped side causes much larger variations in the resulting 
depletion width and current density. 

 
 

  

Jnew

J
=

4.968

5.352
= 92.9% 

 
∆J

J
= −7.1% 

 
 



Problem 3: In a P+N junction, the hole diffusion current in the neutral n material is given 
by Eq. 5.32 in Streetman. What are the electron diffusion and electron drift components 
of current at point xn in the neutral n region? 

𝐼𝑝(𝑥𝑛) =
𝑞𝐴𝐷𝑝

𝐿𝑝
∗ 𝑝𝑛𝑒𝑞𝑉/𝑘𝑇𝑒−𝑥𝑛/𝐿𝑝         𝑓𝑜𝑟 𝑉 ≫

𝐾𝑇

𝑞
  

𝐼𝑡𝑜𝑡 ≅ 𝐼𝑝(𝑥𝑛 = 0) =
𝑞𝐴𝐷𝑝

𝐿𝑝
𝑝𝑛𝑒𝑞𝑉/𝑘𝑇 

Assuming space charge neutrality, the excess hole distribution is equal to the 

excess electron distribution: 

𝛿𝑛(𝑥𝑛) = 𝛿𝑝(𝑥𝑛) 

𝐼𝑛,𝑑𝑖𝑓𝑓(𝑥𝑛) = 𝑞𝐴𝐷𝑛

𝑑𝛿𝑛

𝑑𝑥𝑛
=

𝑞𝐴𝐷𝑛

𝐿𝑝
𝑝𝑛𝑒𝑞𝑉/𝑘𝑇  𝑒−𝑥𝑛/𝐿𝑝 

𝑆𝑖𝑛𝑐𝑒 𝐼𝑡𝑜𝑡 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑒 ℎ𝑎𝑣𝑒 ∶  

𝐼𝑛,𝑑𝑟𝑖𝑓𝑡(𝑥𝑛) = 𝐼𝑡𝑜𝑡 − 𝐼𝑛,𝑑𝑖𝑓𝑓(𝑥𝑛) − 𝐼𝑝(𝑥𝑛) 

𝐼𝑛,𝑑𝑟𝑖𝑓𝑡(𝑥𝑛) =
𝑞𝐴𝑝𝑛

𝐿𝑝
𝑒

𝑞𝑉
𝐾𝑇 [𝐷𝑝 (1 − 𝑒

−
𝑥𝑛
𝐿𝑝 ) + 𝐷𝑛𝑒

−
𝑥𝑛
𝐿𝑝 ] 

 

 

  



Problem 4: Assume that a P+N diode is built with a quasi-neutral n region having a width 

l which is smaller than the hole diffusion length (l < Lp). This is a so-called narrow base 

diode. Since for this case holes are injected into a shorter n region under forward bias, 

we cannot use the boundary condition 𝛿𝑝(𝑥′ =∞) = 0 as in Eq. 4-35 in Streetman. 

Instead, our boundary condition becomes 𝛿𝑝(𝑥′ = 𝑙) =  0. 

Part A: Solve the diffusion equation for this case to obtain 𝛿𝑝(𝑥′) =
𝛥𝑝𝑛[𝑒

𝑙−𝑥′
𝐿𝑃 −𝑒

−
𝑙−𝑥′
𝐿𝑝 ]

𝑒

𝑙
𝐿𝑝−𝑒

−
𝑙

𝐿𝑝

 

𝑑2𝛿𝑝

𝑑(𝑥′)2
=

𝛿𝑝(𝑥′)

𝐿𝑝
2

 

𝛿𝑝(𝑥′) =  𝐶𝑒
−

𝑥′
𝐿𝑝 + 𝐷𝑒

𝑥′
𝐿𝑝 

Most of the holes will diffuse across the narrow n region without recombining. At the 

contact: 

 𝐴𝑡 𝑥′ = 𝑙 ∶      𝛿𝑝 = 0  

𝐴𝑡 𝑥′ = 0: 𝛿𝑝 = 𝛥𝑝𝑛 

𝛥𝑝𝑛 = 𝐶 + 𝐷 

0 =  𝐶𝑒
−

𝑙
𝐿𝑝 + 𝐷𝑒

𝑙
𝐿𝑝  

 

𝑺𝒐𝒍𝒗𝒊𝒏𝒈 ∶  

𝐶 =
𝛥𝑝𝑛𝑒

𝑙
𝐿𝑝

𝑒
𝑙

𝐿𝑝 − 𝑒
−

𝑙
𝐿𝑝

 

𝐷 = 𝛥𝑝𝑛 − 𝐶 = −
𝛥𝑝𝑛𝑒

−
𝑙

𝐿𝑝

𝑒
𝑙

𝐿𝑝 − 𝑒
−

𝑙
𝐿𝑝

 

plugging C and D:  

𝛿𝑝(𝑥′) =

𝛥𝑝𝑛 [𝑒
𝑙−𝑥′

𝐿𝑝 − 𝑒
−𝑙−𝑥′

𝐿𝑝 ]

𝑒
𝑙

𝐿𝑝 − 𝑒
−

𝑙
𝐿𝑝

 

 



Part B:  If l << Lp show   𝛿𝑝(𝑥′) = 𝛥𝑝𝑛 (1 −
𝑥′

𝑙
) 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−

𝑥3

3!
 

𝑒𝑥 − 𝑒−𝑥 = 2 [2 +
𝑥3

3!
+ ⋯ ] 

𝑒
𝑙

𝐿𝑝 − 𝑒
(−

𝑙
𝐿𝑝

)
= 2 [

𝑙

𝐿𝑝
] = 2       𝑠𝑖𝑛𝑐𝑒

𝑙

𝐿𝑝
≪ 1     

𝑥3

3!
≪ 𝑥 

𝑒
𝑙−𝑥′

𝐿𝑝 − 𝑒
(

−(𝑙−𝑥′)
𝐿𝑝

)
= 2 [

𝑙 − 𝑥′

𝐿𝑝
] 

𝛿𝑝(𝑥′) = 𝛥𝑝𝑛 [
𝑙 − 𝑥′

𝑙
] = 𝛥𝑝𝑛 [1 −

𝑥′

𝑙
] 

  

    

 


