
CHAPTER 1

DEVICE PHYSICS PRIMER

Before we begin thinking about analog circuit design we must first understand some
basic device physics. Let us first review some electrostatics and transport concepts.

1.1 BASIC ELECTROSTATICS

The fundamental law of electrostatics is Couloumb’s law given by

F =
q1q2

4πεr2
(1.1)

which describes the force between two charges q1 and q2 separated by a distance r.
The inverse square law relationship is a consequence of the homogeneity of space i.e
there is no preferred direction for the laws of physics. Therefore, the force should
be equal in all direction. In two dimensions this would be circle and in 3-D it
describes a sphere. It can be intuitively understood by examining the form of the
denominator. It can be seen that it is the surface area of a sphere of radius r.
Assume that q1 is equally distributed on the surface of this sphere the effective
charge at any point is then given by q1

4πr2 . It can be seen then that the force felt
by q2 is the interaction of q2 with the effective charge of q1 at point r divided by
ε. The effective charge q1

4πr2 divided by ε is the effective force per unit charge at
the point r and is called the field ~E due to charge q1. The direction of the field, ~E
pointing normal to the surface of the sphere.
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Figure 1.1 Gauss Law Surface

To be able to perform useful calculations with the basics laws we need to be
able to compute the effect of multiple charges. Since the system is linear the law
of superposition ( vector addition) applies. So the field due to multiple charges on
a charge at point j due to charges at i is given by Eij =

∑ qi

4πε(ri−rj)2
. If we so

do not consider the underlying discrete nature of charge we can make a continuum
approximation and replace the summation with the integral giving the following
equation for the field E = 1

4πε

∫
ρdV
r2 where ρ is the volume charge density and

r is . Unfortunately unless the charge density is uniform the computation gets
difficult. Luckily there is a quantity, namely flux, that can considerably ease the
calculation. Flux as the name suggests is the total number of particles that are
flowing through an area normal to the plane per unit time. The reason why the
normal direction is important is that any other direction can be decomposed into
a normal and parallel component, while the particle’s normal component passes
through the surface and hence contributes to the flux, the parallel component does
not. However, the term particles is a too strict and evokes an idea of physical
particles in the mind’s eye. Though this mental picture is correct and can aid in
understanding, it is a limited description. Any vector field can have an associated
flux. It is, of course a vector field because the direction i.e. normal to the plane is
important. An easy way to only account for the normal component of the field is
to take the dot product of the field under consideration with the oriented surface
vector under consideration. The perceptive reader will be quick to note that this
will only work if the surface is a plane. However, this is a minor impediment
since we can always approximate any surface as a number of small planes oriented
normal to the patch under consideration. The flux is, of course, a scalar. Let us
now consider the flux of the electric field through this surface due to some charge
enclosed within it. To perform this calculation we find the Electric field ~Ej at patch
j and take the dot product with the oriented surface vector ~nj . By repeating this
operation throughout the entire surface we can compute the flux φ =

∑ ~Ej . ~nj . If
we make the surface infinitesimally small then we can replace the summation with
the integral φ =

∫
Surface

~E.d~n
So how does this formulation help us? Let us consider a simple surface of a

sphere of radius r that encloses a charge Q 1. The electric field in this case is the
same at every point and is given by Q

4πεr2 . The integral is simply the surface area
of the sphere which yields φ = Q

4πεr2 .4πr
2 = Q

ε . This is a remarkable results that
shows that the flux going through a sphere does not depend on the surface area of
the sphere. This result is entirely a consequence of the inverse square law behavior
of the electric field. Moreover, this result does not just hold for spheres it holds for
any arbitrary surface as we will soon show.

1This charge need not be a single charge. It can be a distributed charge then we need to ensure
that the sphere radius, r, is many times the radius of a sphere tightly enclosing this charge. The
radius r is measured from the center of mass of the charge distribution.
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1.2 TRANSPORT

There are two fundamental modes of transport drift and diffusion. In recent years
due to ever decreasing device sizes ballistic transport has become important as
well. Let us start with diffusion, Fick’s 1st law in one dimension, which we will
later derive from a molecular perspective, is

φ(x, t) = −D∇C(x, t) (1.2)

Where D is the diffusion constant, the negative sign arises from the fact the flux
direction is opposite to the direction of the gradient. C(x,t) is the concentration
which is a function of both space and time. The units of Flux are of course particle

m2s ,
therefore the diffusion constant must have units of m2

s .
Let us derive Fick’s first law from a molecular perspective, to do this we need

to define a few key parameters. The first is τf which is the mean time between
collisions in a system in thermal equilibrium. By this we mean that the molecules
are jiggling about due to temperature and they randomly collide with each other.
In between collisions they travel with a mean velocity v̄ and travel a distance l. To
make matters simple we will consider a fictitious box in one dimension with a large
number of particles in thermal equilibrium at temperature T. Imagine now that we
are looking at a small box of length 2l, defined as in figure ??. Now in the interval
of a mean time between collision half the particles will travel from the right (-l/2)
of the box to the left half, while half the particles will travel from the left (l/2) to
the right. The reason half the particles travel is because every particle has a equal
probability that it will travelling to the right or left. Now the let the flux in the +x
direction be φ+ and the flux in the -x direction be φ−. The net flux in +x direction
is φ = φ+ − φ−. Now the flux is given by the number of particles/unit area/unit
time. The number of particles = concentration *volume = concentration*area*l.
So

φ+ =
1
2
C(x− l

2 , t)Al
Aτf

(1.3)

and similarly

φ+ =
1
2
C(x+ l

2 , t)Al
Aτf

. (1.4)

So

φ =
l

2τf
C(x− l

2
, t)− C(x+

l

2
, t). (1.5)

From a macroscopic point of view x� l so then we can expand the concentration
using a Taylor’s series around the point x. i.e.

C(x− l

2
, t) = C(x, t)− l

2
dC(x, t)
dx

+ higher order terms (1.6)

C(x+
l

2
, t) = C(x, t) +

l

2
dC(x, t)
dx

+ higher order terms (1.7)
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Ignoring higher order terms since l
2 is small and substituting into the equation

for flux we get,

φ =
l

2τf

(
(C(x, t)− l

2
dC(x, t)
dx

)− (C(x, t) +
l

2
dC(x, t)
dx

)
)

(1.8)

φ = − l2

2τf
dC(x, t)
dx

(1.9)

Comparing this with Fick’s first law, we see that

D =
l2

2τf
(1.10)

From the equipartition theorem we have

1
2
mv̄2 =

1
2
κT (1.11)

v̄2 = m

(
l

τf

)2

= m
D

τf
(1.12)

D = τf
kT

m
(1.13)

For semiconductor devices we are generally interested in charged particles and
to be consistent with other standard textbooks we will use n(x,t) to denoted the
concentration of charged carriers. So the diffusive current is then given by

Jdiffusione = qDe
dn(x, t)
dx

(1.14)

were we assumed that the charged particle was an electron with charge −q and
concentration n(x, t). If instead we were interested in positive charge carriers, holes,
with charge q and concentration p(x, t),

Jdiffusionh = −qDh
dp(x, t)
dx

(1.15)

The negative and positive sign ensures that the current direction is consistent. We
define the positive current direction to be the flow of positive charges. In this
convention a electron current and hole current with the same concentration profile
will oppose each other.

We looked at transport due random thermal motion namely diffusive transport.
How about transport due to a constant driving force F, this is named drift.
Now we know from ~F = md~v

dt . Separating the variables and integrating we get
~vfinal − ~vinitial = ~F

m

(
tfinal − tintial

)
As we know form our discussion on diffusion,

particles collide with each other and the mean time between collision is τ . The
particle travels with and average velocity v̄ between these collisions. As long as
the force is not large enough to change the mean time between collisions we can
substitute these parameters to yield ~̄v = ~Fτ

m

From the definition of flux we have ~J = C(x, t)~v, where ~J is the flux. Substituting
for ~v from the above equation we get, ~J = C(x, t) ~Fτm
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Again we can extend this to charged particles by multiplying the concentration by
the appropriate charge and multiplying and diving by q and noting that ~F

q = ~E, for

electrons we get ~
Jdrifte = −q2n(x, t) ~Eτm∗

e
and ~

Jdrifth = q2p(x, t) ~Eτm∗
h

for holes, where we
have replaced classical mass with quantum mechanically corrected effective masses
due to the interaction of the charged carrier with the ionic potentials. Now we can
define the electron and hole mobilities as µe = qτ

m∗
e

and µh = qτ
m∗

h
respectively. So we

get ~
Jdrifte = −qµen(x, t) ~E and ~

Jdrifth = qµhp(x, t) ~E. We can also relate the velocity
to the field as ~ve = µe ~E and ~vh = µh ~E. We can one further simplification by noting

that qµen(x, t) has the units of conductivity, σe. So we can write ~
Jdrifte = −σe ~E

and similarly ~
Jdrifth = σh ~E which is , of course, Ohm’s Law.

In our above discussion it was implicitly assumed that the collision time was
unaffected by the prescence of a field.

1.3 QUANTUM STATISTICS

To Be Written

1.4 METAL-SEMICONDUCTOR JUNCTION

To Be Written

1.5 P-N JUNCTION

To Be Written

1.6 TWO TERMINAL MOS STRUCTURE

Consider a metal-oxide-semiconductor(p-type) sandwich brought into intimate con-
tact. If there is zero potential across of it i.e. we connect a wire between the metal
and semiconductor, then electrons will flow from the metal into the semiconductor
if the work function of the metal is above the work function of the semiconductor.
Now there is a layer of positive charge in the metal oxide interface and there is
layer of negative charge in the semiconductor. The ‘̀built-iń’ potential is given by
the difference in work functions of the metal and semiconductor.

φbi = Ws −WM (1.16)

One can also divide the built-in potential into the drop across the oxide and the
drop across the semiconductor. For the sake of convenience we will measure all
potential will respect to the bulk i.e. phibulk = 0. SO we have φbi = φox + φs

In a p-type semiconductor the total charge in the semiconductor due to a charge
on the gate is given by

ρs = q(p− n−NA) (1.17)
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Since there is no current flow in a MOS structure we can use equilibrium physics
to compute the relationship betwen the charge and the potential given by the
Boltzmann relation.

n = nbulkexp

(
qφ

kT

)
(1.18)

p = pbulkexp

(
−qφ
kT

)
(1.19)

(1.20)

We also have the following relationship at equilbrium, far away in the bulk charge
neutrality has to hold since the charge in the gate has been compensated. So at
the bulk

q(pbulk − nbulk −NA) = 0 (1.21)

Recall that a semiconductor in equilibrium maintains an equilibrium concentra-
tion between electron and hole concentration given by

nbulkpbulk = n2
i (1.22)

But we also know that the number of holes is approximately equal to the number
of dopant atoms since the holes creaed to the dopant atoms are much greater than
the intrinsic hole concentration. so pbulk ≈ NA using this relation in equation1.22
we get n = n2

i

NA
. Substituting this in the boltzmann relation we get

n =
n2
i

NA
exp

(
qφ

kT

)
(1.23)

p = NAexp

(
−qφ
kT

)
(1.24)

(1.25)

We need to ensure that the charge neutrality is preserved in the bulk where the
potentional is zero. Using this boundary condition in the above equation gives

n =
n2
i

NA
(1.26)

p = NA (1.27)
(1.28)

However when substituted into the charge neutrality equation this does not hold.
So we need to add a compensating charge of n2

i

NA
to the overall charge equation.

Making this addition and collecting common terms we get the following relation-
ship

ρs = qNA

(
exp
−qφ
kT
− 1
)
− n2

i

N2
A

(
exp

qφ

kT
− 1
)

) (1.29)

Posisson’s equation from electrostatics is given by d2φ
dx2 = −ρs

εs
Using this we get

d2φ

dx2
=
qNA
εs

(
1− exp

−qφ
kT

)
+

n2
i

N2
A

(
exp

qφ

kT
− 1
)

) (1.30)
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Now this is rather nasty equation at first sight but we can perform one simplifi-

cation using a trick from calculus which is d
dx

(
dφs

dx

)2

= 2dφs

dx
d2φs

dx2 so we get

d

dx

(
dφ

dx

)2

= 2
qNA
εs

(
1− exp

−qφ
kT

)
+

n2
i

N2
A

(
exp

qφ

kT
− 1
)

)
dφ

dx
(1.31)

Integrating on both sides with respect to x we get(
dφ

dx

)2

=
2qNA
εs

(
φ+

kT

q
(exp

−qφ
kT
− 1)

)
+
n2
i

N2
A

(
kT

q
(exp

qφ

kT
− 1)− φ

)
) (1.32)

Taking the square root on both sides we get

dφ

dx
= ±

√
2qNA
εs

[(
φ+

kT

q
(exp

−qφ
kT
− 1)

)
− n2

i

N2
A

(
kT

q
(exp

qφ

kT
− 1)− φ

)] 1
2

(1.33)
Now we could try and perform an integration by separating the variables but un-
fortunately a closed form expression cannot be obtained and we have to resort to
numerical methods due to the rather complicated function in φ. We can however
gain some insight into the nature of this function. The first question we have to ask
ourselves is which root is valid. We turn to the intuitive physical picture to answer
this. We know that −dφdx represents the Electric field. Now the electric field is
pointing in the +x direction when the charge in the semiconductor layer is negative
or the MOS structure is in depletion or inversion, so this means the negative root is
valid. In accumulation we have the positive root valid since the field points in the
−x direction, we should keep this in mind when we try making simplifications. Now
if we want to write the function without having to worry about this we note that
the sign of φ gives the negative of the sign to use, of course we need to normalize
so we divide by ‖φ‖. So we can write the function of φ as

F (φ) = − φ

‖φ‖

[(
φ+

kT

q
(exp

−qφs
kT

− 1)
)

+
n2
i

N2
A

(
kT

q
(exp

qφs
kT
− 1)− φ

)] 1
2

(1.34)
So we can rewrite equation 1.33 as

dφ

dx
= F (φ)

√
2qNA
εs

(1.35)

Now we can, at least symbolically, integrate both sides∫
dφ

F (φ)
=
∫ x

0

√
2qNA
εs

dx (1.36)∫
dφ

F (φ)
=
√

2qNA
εs

x (1.37)

(1.38)

Now we can perform some simplifications based on our intuitive picture by exam-
ining the different regions of operation.
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1.6.1 Accumulation

In accumulation we know that the concentration of electrons is very small. If we
look at the second half of out function F (φ) we see that it is multiplied by a pre-
factor which is the electron concentration n2

i

NA
divided by the dopant concentration

NA, this is a very small number in accumulation and can be ignored. Now the
value surface potential in accumulation is sufficiently larger than kT/q Then we
can further simplify the function so we have

F (φ) =

√
kT

q
exp
−qφs
2kT

(1.39)

So now the integral becomes

∫
dφ

exp −qφ2kT

=

√
kT

q

2qNA
εs

x (1.40)

Integrating this function from the surface to the bulk we get

exp
qφ

2kT
− exp

qφs
2kT

=

√
q2NA
2kTεs

x (1.41)

The square root of the ratio between the thermal potential to divergence of the
electric field is the Debye length2, LD. So we can rewrite the above equation as

exp
qφ

2kT
− exp

qφs
2kT

=
x√
2LD

(1.42)

At the end of the accumulation the potential goes to zero.Therefore we have the
the thickness of the accumulation layer xacc is given by

xacc =
√

2LD

(
1− exp

qφs
2kT

)
(1.43)

Since the surface potential is sufficiently larger than kT/q and negative we get

xacc ≈
√

2LD (1.44)

From this we can compute the surface charge in the accumulation layer (due to
holes) The excess hole concentration (since the background concentration cannot
give rise to charge since it is everywhere balanced by the dopant charge) due to the
charge on the gate is given by

Qh =
∫ xacc

0

qNA

(
exp
−qφ
kT
− 1
)
dx (1.45)

2The Debye length is a molecular expression of the drift-diffusion balance. Explicitly is the
characteristic length over which the charge must be distributed since we cannot have concentrated
sheet of charge.
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We can change the limits of integration from x to φ and noting that dφ
dx = F (φ)

√
2qNA

εs

and F is given by equation 1.34 Making this substitution we get

Qh =
∫ 0

φs

qNA

√
εs

2qNA

√
q

kT
exp

qφ

2kT

(
exp
−qφ
kT
− 1
)
dφ (1.46)

Qh =
εsLD√

2

∫ 0

φs

(
exp
−qφ
2kT

− exp
qφ

2kT

)
dφ (1.47)

The second term is small so we can neglect it and perform the integration yielding

Qh =
εs√
2LD

2kT
q

(
exp
−qφs
2kT

− 1
)

(1.48)

If we examine this closely we see that the surface charge is given by the molecular
capacitance/per unit area times the thermal potential with a multiplying factor.

1.6.2 Depletion

In depletion again we can neglect the term due to electrons since it is small. However
the potential is positive and larger than a few kT/q so we have

F (φ) = −
√
φ (1.49)

Now performing the integration on equation 1.38 we get√
φs −

√
φ =

√
qNA
2εs

x (1.50)

We can computer the maximum width of the depletion layer as

xdepmax =

√
2φsthεs
qNA

(1.51)

where we have denoted the surface potential at maximum depletion as φsth
The total depletion charge is given by

Qs = −qNAxdepmax = −
√

2qNAφsthεs (1.52)

1.6.3 Inversion

Inversion is a bit tricky to deal with since it is really composed of two regions an
inverted region near the surface and a depleted region away from the surface. Now
we need a delineating condition in terms of potential so that we can treat these two
regions. If the total electron concentration in the region due the potential at that
region is less than the dopant concentration then it should be in depletion and is
above then it should be in inversion. At the onset of inversion the total electron
concentration must be equal to the dopant concentration Therefore

n =
n2
i

NA
exp qφsthkT = NA (1.53)

φsth = 2
kT

q
ln
NA
ni

= 2φf (1.54)
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Since the characteristics change in the semiconductor as a function of surface
potential we will use a piecewise approximation to make our lives easier. When
φ > 2φf the function

F (φ) = −

√
n2
i

N2
A

(
kT

q
(exp

qφ− 2φf
kT

− 1) + 2φf

)
(1.55)

φ ≤ 2φf then we can use the depletion approximation derived earlier.
Now we will follow a slightly different path to avoid confusing the main issue

with too much math. Now equation 1.35 is the Electric field in the semiconductor
i.e.

~Es = F (φ)
√

2qNA
εs

(1.56)

Now the divergence of the field gives the total charged enclosed in the volume
divided by the permittivity of the semiconductor. The surface charge density is,
however, given by the field at the surface times the permittivity so we get

Qs = F (φs)εs

√
2qNA
εs

(1.57)

Substituting the expression for F (φs) we get

Qs = −εs
√
qNA
εs

√(
n2
i

N2
A

kT

q
(exp

qφs − 2φf
kT

− 1) + 2φf

)
(1.58)

We can get the inversion layer charge by subtracting the depletion layer charge
from the total charge.

Qi = −
√

2qNAεs

[√(
2φf +

n2
i

N2
A

kT

q
(exp

qφs − 2φf
kT

− 1)
)
−
√

2φf

]
(1.59)

We now would like to relate the inversion charge in the channel to the applied
potential. For this we turn to Kirchoff’s voltage law which is an expression of energy
conservation i.e.

V + φbi = φox + φs (1.60)

Now we can bring the semiconductor into a ”flat-band” condition by applying an
appropriate potential on the gate w.r.t the semiconductor bulk. Of course the value
of this potential must be exactly equal to the negative built-in potential. Expressing
this mathematically and substituting into equation 1.60. we get

VFB = −φbi (1.61)
V = VFB + φox + φs (1.62)

Since there is no charge in the oxide the field in the oxide is a constant, so the
potential is linearly related to the field via the oxide thickness i.e.

φox = − ~Eoxxox (1.63)
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At the semiconductor oxide interface the displacement field must be equal so we
get

~Eox =
εs
εox

~Es (1.64)

~Es =
Qs
εs

(1.65)

~Eox =
Qs
εox

(1.66)

φox = −Qsxox
εox

(1.67)

The capacitance per unit area of the oxide is given by

Cox =
εox
xox

(1.68)

Using this relationship we can express the potential drop across the oxide as

φox = − Qs
Cox

(1.69)

The total charge in the semiconductor can be expressed as sum of the inversion and
depletion layer charges Qs = Qi +Qdep. Using this relationship we get

φox = −Qi +Qdep
Cox

(1.70)

V = VFB + φs −
Qi +Qdep

Cox
(1.71)

Qi = −Cox
(
V − (VFB + φs +

Qdep
Cox

)
)

(1.72)

The expression for Qi depends on the linear value of φs in equation 1.72 but also
the exponential value of φs in equation 1.59. However, since the surface potential
does not change much (due to the exponential nature of charge dependence in the
inversion layer on the surface potential) we can approximate φs = 2φf for small
values of φs. So we get

Qi = −Cox

(
V − (VFB + 2φf +

√
qεsNA2φf
Cox

)

)
(1.73)

We can make a couple of simplifications, we can define the potential required to
bring on the onset of inversion as the threshold voltage and also define a body factor
that relates the control of the bulk on the electrostatics of the channel to that of
the gate.

γ =
√

2qεsNA
Cox

(1.74)

V = Vth 7→ Qi = 0 (1.75)
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Vth = VFB + 2φf + γ
√

2φf (1.76)

Qi = −Cox (V − Vth) (1.77)

1.6.4 Subthreshold

In the depletion domain of the MOS structure there is finite electron concentration
in the depletion region. The reason for this is that the potential applied on the gate
makes the surface attractive enough for the thermally generated electrons. We can
calculate this electron concentration by simply using the Boltzmann relation i.e.

Qe = −q n
2
i

NA

∫ ∞
0

exp
qφ

kT
dx (1.78)

However, we notice that the electron concentration is mainly at the surface of
the MOS structure. We will denote the thickness of this layer as t and the surface
potential is approximately constant around t. Performing the integration we get.

Qe = −qt n
2
i

NA
exp

qφs
kT

(1.79)

Now we need to relate φs to the applied potential V . If we look at the structure
closely we see that the potential at the surface is the result of capacitive charge
division between the gate capacitor and the depletion capacitor. So we get

dφs
dV

=
Cox

Cox + Cdep
(1.80)

φs =
Vgb
n

+K (1.81)

K = −Vth
n

+ 2φf (1.82)

φs =
(Vgb − Vth)

n
+ 2φf (1.83)

(1.84)

Substituting this and collecting terms we get

Qe = −qt n
2
i

NA
exp

2qφf
kT

exp
q(Vgb − Vth)

nkT
(1.85)

1.7 MOSFET LONG-CHANNEL

1.7.1 Current flow in Strong Inversion

Let us derive the current that flows in a mosfet in strong inversion. Current =
Charge×velocity Now the channel charge = Width of Channel × Inversion Layer
Charge × mobility × Electric field. Inversion layer charge = Channel Capacitance
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× potential in the channel. Consider a point y in the channel. The charge at this
point

Q(y) = −Cox (Vg − Vtn − V (y)) (1.86)
J = qNv(y) (1.87)

N =
Q(y)
t

(1.88)

I = JWt (1.89)
I = WQ(y)µnE(y) (1.90)

E(y) = −dV (y)
d(y)

(1.91)

I = WCoxQ(y)µn
dV (y)
d(y)

(1.92)∫ L

0

Idy =
∫ Vd

Vs

WµnCox (Vg − Vtn − V (y)) dV (y) (1.93)

IL = WµnCox

(
(Vg − Vtn)V (y)|Vd

Vs
− V (y)2

2
|Vd

Vs

)
(1.94)

I = µnCox
W

L

(
(Vg − Vtn)(Vd − Vs)−

1
2

(V 2
d − V 2

s )
)

(1.95)

We can rewrite this to refer to Vs as follows:

I = µnCox
W

L

(
(Vg − Vs + Vs − Vtn)(Vd − Vs)−

1
2

(V 2
d − V 2

s )
)

(1.96)

I = µnCox
W

L

(
(Vg − Vs)− Vtn)(Vd − Vs) + Vs(Vd − Vs)−

1
2

(V 2
d − V 2

s )
)

(1.97)

I = µnCox
W

L

(
(Vg − Vs − Vtn)(Vd − Vs) + VsVd − V 2

s −
V 2
d

2
+
V 2
s

2

)
(1.98)

I = µnCox
W

L

(
(Vg − Vs)− Vtn)(Vd − Vs) + VsVd −

V 2
s

2
− V 2

d

2

)
(1.99)

I = µnCox
W

L

(
(Vg − Vs)− Vtn)(Vd − Vs)−

1
2

(V 2
d + V 2

s − 2VdVs)
)

(1.100)

I = µnCox
W

L

(
(Vg − Vs)− Vtn)(Vd − Vs)−

1
2

(Vd − Vs)2
)

(1.101)

We can write Vg−VS as Vgs, meaning the gate voltage w.r.t the source and Vd−VS
as Vds, the drain voltage w.r.t the source.

I = µnCox
W

L

(
Vgs − Vtn)Vds −

1
2
V 2
ds

)
(1.102)

In Saturation the potential across the inversion layer is VDS ∼= VGS − Vth using
this relation we get

I = µnCox
W

2L
(Vgs − Vtn))2 (1.103)

This is only approximately right.
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1.7.2 The body effect

We have implicitly assumed till now that the body and the source at the same
potential so the reference can be interchanged without any change in the equation.
However, when a finite source body potential exists we need to modify the quations.
This is fairly straight forward since all the equations that we use depend on the
surface potential referred to the bulk. We can take the finite source bulk potential
into account by substituting φbulks 7→ φsources +Vsb and that φsources

∼= 2φf in strong
inversion. When we use this substitution in the threshold voltage we get

Vth = VFB + 2φf + Vsb + γ
√

2φf + Vsb (1.104)

Vth = VFB + 2φf + γ
√

2φf + γ
√

2φf + Vsb − γ
√

2φf (1.105)

Vth = Vth0 + γ
√

2φf + Vsb − γ
√

2φf (1.106)

This is especially important in computing the current in the channel. Since the
threshold changes along the channel due to the potential between the channel and
the bulk. We can easily model this effect by modifying equation ??,1.77 to give

Qi = −Cox
(
Vgs − V (y)− (V th0 + γ

√
V (y) + 2φf − γ

√
2φf )

)
(1.107)

Substituting this in equation 1.95 we get

I = WCoxQ(y)µn
dV (y)
d(y)

(1.108)

I = WCoxµn

(
Vgs − V (y)− (V th0 + γ

√
V (y) + 2φf − γ

√
2φf )

)
dV (y)
d(y)

(1.109)

Integrating this equation we get∫ L

0

Idy =
∫ Vds

0

WCoxµn

(
Vgs − V (y)− (V th0 + γ

√
V (y) + 2φf − γ

√
2φf )

)
dV (y)

(1.110)
Substituting the limits and simplifying we get

IL = WCoxµn

[
(Vgs − V th0)Vds −

V 2
ds

2
2
3
γ((Vds + 2φf )3/2 − (2φf )3/2) + γ

√
2φfVds

]
(1.111)

I =
W

L
µnCox

[(
Vgs − V th0 + γ

√
2φf −

Vds
2

)
Vds −

2
3
γ((Vds + 2φf )3/2 − (2φf )3/2)

]
(1.112)

We can also use this in the saturation equation by substituting Vds with Vds =
Vgs − Vth when the inversion charge at the drain end is 0.

1.7.3 Subthreshold Current

To derive the subthreshold equation we turn to diffusive flow since the electron
concentration is very small and hence drift does not play a major role. So we have

Isubds = −qWDn
dn

dx
(1.113)
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Since there is no recombination in the channel (assuming the channel is smaller than
the recombination length) the differential can be replaced by the linear equivalent
and we get

Isubds = qWDn
Qs −Qd

L
(1.114)

The drain and source electron concentration can be found using equation 1.79 and
changing the reference for the surface potential making this substitution we get

Qs = −qt n
2
i

NA
exp

2qφf
kT

exp
qφsources

kT
(1.115)

φsources = φbulks − Vsb (1.116)

φsources =
(Vgb − Vth)

n
− Vsb (1.117)

φsources =
(Vgb − Vsb + Vsb − Vth)

n
− Vsb (1.118)

φsources =
(Vgs − Vth)

n
− Vsb

n− 1
n

(1.119)

Qs = −qt n
2
i

NA
exp

2qφf
kT

exp
(Vgs−Vth)

n − qVsb n−1
n

kT
(1.120)

Similarly we can compute the electron concentration at the drain side

Qd = −qt n
2
i

NA
exp

2qφf
kT

exp
q(Vgb−Vth)

n − qVdb
kT

(1.121)

Qd = −qt n
2
i

NA
exp

2qφf
kT

exp
q(Vgs−Vth)

n + q Vsb

n − qVdb
kT

(1.122)

(1.123)

Then Ids is given by

Isubds =
qWtDnn

2
i

LNA
exp

2qφf
kT

exp
q(Vgs − Vth)

nkT
exp
−qVsb(n− 1)

nkT

(
1− exp

−qVds
kT

)
(1.124)

If Vds � kT
q , the current becomes indepepndent of the drain-source voltage and

the transistor is in saturation and the current is given by,

Isubdssat =
qWtDnn

2
i

LNA
exp

2qφf
kT

exp
q(Vgs − Vth)

nkT
exp
−qVsb(n− 1)

nkT
(1.125)

1.8 MOSFET SHORT-CHANNEL

As devices scale, effects that were ignored in the earlier derivation need to be taken
into account for an accurate prediction of the drain current we will examine these
effects and understand the physical reasons for them.
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1.8.1 Mobility Degradation

The vertical field imposed by the gate causes the charge carriers to frequently collide
at the semiconductor-insulator interface. The quality of the Si − SiO2 interface
is usually of very quality so we can assume that most of the collision energy is
carried by phonons. Under this simplifying assumption we can relate the mobility
to the applied field. In a low field condition the mobility is set by bulk scattering
mechanisms, namely ionized impurity scattering. In strong inversion the inversion
charge effectively screens the bulk charge and the mobility is dominated by the
surface scattering effects. Mobility is inversely proportional to the normal field so
we can express the mobility as

µ0 ∝
1∣∣∣ ~E0(x)
∣∣∣ (1.126)

µav ∝
1∣∣∣ ~Eav(x)

∣∣∣ (1.127)

~E0(x) is the field that gives rise to the low field mobility µ0 under bulk scattering
dominated conditions and ~Eav is the average field that gives rise to the surface
scattering dominated mobility µav.

In general both mechanisms are present and we can use ’Mathieson’s rule’ to get
an effective mobility,3 µeff .

1
µeff

=
1
µ0

+
1
µav

(1.128)

We can substitute equation 1.127 and simplify to get

µeff =
µ0

1 +
∣∣∣ ~Eav
~E0

∣∣∣ (1.129)

It should be noted that experimentally it has been found that the effective field
dependent mobility is given by

µeff =
µ0(

1 + ~Eav
~E0

)ν (1.130)

The value of ν that gives the best fit for electron mobility is 2 and for hole mobility
it is 1. However, to get a tractable closed form equation ν is often assumed to be
1.

The average field is given by the expectation of the field with the probability
given by the charge at the point in a vertical slice of the MOS structure, this of
course needs to be normalized. Mathematically

~Eav =
∫ ~E(x)qn(x)dx∫

qn(x)dx
(1.131)

3This can be intuitively derived form the superposition of fields and the inverse relationship
between the applied field and the mobility
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We can change the integration variable from x 7→ Ei(x) +Edep by using Gauss’s

law d ~E(x)
dx = −qn(x)

εs
we get

~Eav =
∫

( ~Ei(x) + ~Edep)d ~Ei(x)∫
d ~Ei(x)

(1.132)

Performing the integration we get

~Eav =
1
2

~Ei(x) + ~Edep (1.133)

The field is given by Q
ε making this substitution we get

~Eav =
1
εs

(
Qi
2

+Qdep

)
(1.134)

To get a sense for how device scaling affects the average field we can relate the
inversion layer charge and depletion charge to the applied voltage i.e

Qi = −Cox (Vgs − Vth) (1.135)
Qdep = −Cox(Vth − VFB − 2φf ) (1.136)

Using these relationships we get

~Eav =
−εox
εs

(
Vgs+Vth

2 − Va
)

xox
(1.137)

Where we have made use of the Cox = εox

xox
and Va = VFB + 2φf .

1.8.2 Velocity Saturation

If the field is high enough the carrier temperature is no longer in equilibrium with
the lattice and hot carrier transport must be considered. The effective carrier ther-
mal velocity now becomes the bottleneck since the phonon collision does not effec-
tively randomize the particle’s velocity. Experimentally the velocity dependence on
the field can be modelled as

v(E) =
µeff ~E(

1 + E
Esat

)n (1.138)

We can compute the channel current under velocity saturation conditions as

~Jds = v(E)
Qi
t
I = JWt = Wv(E)Qi (1.139)

Substituting the relation for the inversion layer charge in equation ?? we get

Ids = −µeff
~E(

1 +
∣∣∣ E
Esat

∣∣∣)CoxW (Vgs − Vth − V (y)) (1.140)
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Figure 1.2 gm vs current density in a 0.18um technology

Using the relation E(y) = −dV (y)
dy we get∫ L

0

Ids

(
1+ | dV (y)/dy

Esat
|
)
dy = µeffCoxW

∫ Vds

0

(Vgs − Vth − V (y)) dV (y)

(1.141)
Performing the integration and simplifying we get

Ids = µeffCox
W

L

(
Vgs − Vth −

Vds
2

)
Vds

1 +
∣∣∣ Vds

LEsat

∣∣∣ (1.142)

In saturation Vds 7→ Vgs − Vth, substituting this is equation 1.142 we get

Idssat =
µeff

2
(

1 +
∣∣∣ (Vgs−Vth)

LEsat

∣∣∣)CoxWL (Vgs − Vth)2 (1.143)

1.9 PROBLEMS

1.10 FURTHER READING
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