Department of Electrical \& Computer Engineering
University of California, Santa Barbara

ECE 146A
Winter 2008
Shynk
H.O. \#10

HOMEWORK \#4

Due Friday, February 8, 2008 (5:00 p.m.)

Midterm Exam: Thursday, February 14, 5:00-6:15 p.m. (open book, open notes)

Reading: Chapter 2 (2.7)

Problems:

1. Consider the SSB signal

$$
s(t)=m(t) \cos \left(2 \pi f_{c} t\right)-\hat{m}(t) \sin \left(2 \pi f_{c} t\right)
$$

where f_{c} is the carrier frequency, $m(t)$ is the message signal, and $\hat{m}(t)$ is its Hilbert transform. This modulated wave is applied to a square-law device characterized by

$$
y(t)=s^{2}(t) .
$$

Show that the output $y(t)$ contains a frequency component twice the carrier frequency and has a time-varying phase. Determine if it is possible to extract $m(t)$ after $y(t)$ is low-pass filtered.
2. (a) Let $s_{u}(t)$ denote the SSB signal obtained by transmitting the upper sideband, and let $\hat{s}_{u}(t)$ be its Hilbert transform. Show that

$$
\begin{aligned}
m(t) & =\frac{2}{A_{c}}\left[s_{u}(t) \cos \left(2 \pi f_{c} t\right)+\hat{s}_{u}(t) \sin \left(2 \pi f_{c} t\right)\right] \\
\hat{m}(t) & =\frac{2}{A_{c}}\left[\hat{s}_{u}(t) \cos \left(2 \pi f_{c} t\right)-s_{u}(t) \sin \left(2 \pi f_{c} t\right)\right]
\end{aligned}
$$

where $m(t)$ is the message signal, $\hat{m}(t)$ is its Hilbert transform, f_{c} is the carrier frequency, and A_{c} is the carrier amplitude.
(b) Specify the corresponding equations for the SSB signal $s_{l}(t)$ obtained by transmitting the lower sideband.
(c) Using these results, sketch a block diagram of a coherent receiver for demodulating an SSB signal.
3. Consider a frequency-division multiplexed (FDM) system in which four message signals $m_{1}(t)$, $m_{2}(t), m_{3}(t)$, and $m_{4}(t)$ are, respectively, multiplied by the carrier signals

$$
\begin{aligned}
c_{1}(t) & =\cos \left(2 \pi f_{a} t\right)+\cos \left(2 \pi f_{b} t\right), \\
c_{2}(t) & =\cos \left(2 \pi f_{a} t+\alpha_{1}\right)+\cos \left(2 \pi f_{b} t+\beta_{1}\right), \\
c_{3}(t) & =\cos \left(2 \pi f_{a} t+\alpha_{2}\right)+\cos \left(2 \pi f_{b} t+\beta_{2}\right), \\
c_{4}(t) & =\cos \left(2 \pi f_{a} t+\alpha_{3}\right)+\cos \left(2 \pi f_{b} t+\beta_{3}\right),
\end{aligned}
$$

and the resulting DSB-SC signals are summed and transmitted over a common channel. In the receiver, demodulation is achieved by multiplying the sum of the DSB-SC signals by the four carrier signals separately and then filtering to remove the unwanted components.
(a) Determine the conditions that the phase angles $\left\{\alpha_{i}\right\}(i=1,2,3)$ and $\left\{\beta_{j}\right\}(j=1,2,3)$ must satisfy so that the output of the k th demodulator is $m_{k}(t)$ for $k=1,2,3,4$.
(b) Determine the minimum separation of the carrier frequencies f_{a} and f_{b} relative to the bandwidth of the input signals in order to ensure satisfactory operation of the system.
4. Problem 2.15 (you can use Matlab)
5. Problem 2.17
6. Problem 2.21

