Department of Electrical & Computer Engineering University of California, Santa Barbara ECE 146A Winter 2008 Shynk H.O. #10

HOMEWORK #4

Due Friday, February 8, 2008 (5:00 p.m.)

Midterm Exam: Thursday, February 14, 5:00 - 6:15 p.m. (open book, open notes)

Reading: Chapter 2 (2.7)

Problems:

1. Consider the SSB signal

$$s(t) = m(t)\cos(2\pi f_c t) - \hat{m}(t)\sin(2\pi f_c t)$$

where f_c is the carrier frequency, m(t) is the message signal, and $\hat{m}(t)$ is its Hilbert transform. This modulated wave is applied to a square-law device characterized by

$$y(t) = s^2(t).$$

Show that the output y(t) contains a frequency component twice the carrier frequency and has a time-varying phase. Determine if it is possible to extract m(t) after y(t) is low-pass filtered.

2. (a) Let $s_u(t)$ denote the SSB signal obtained by transmitting the upper sideband, and let $\hat{s}_u(t)$ be its Hilbert transform. Show that

$$m(t) = \frac{2}{A_c} [s_u(t)\cos(2\pi f_c t) + \hat{s}_u(t)\sin(2\pi f_c t)]$$

$$\hat{m}(t) = \frac{2}{A_c} [\hat{s}_u(t)\cos(2\pi f_c t) - s_u(t)\sin(2\pi f_c t)]$$

where m(t) is the message signal, $\hat{m}(t)$ is its Hilbert transform, f_c is the carrier frequency, and A_c is the carrier amplitude.

(b) Specify the corresponding equations for the SSB signal $s_l(t)$ obtained by transmitting the lower sideband.

- (c) Using these results, sketch a block diagram of a coherent receiver for demodulating an SSB signal.
- 3. Consider a frequency-division multiplexed (FDM) system in which four message signals $m_1(t)$, $m_2(t)$, $m_3(t)$, and $m_4(t)$ are, respectively, multiplied by the carrier signals

$$c_{1}(t) = \cos(2\pi f_{a}t) + \cos(2\pi f_{b}t),$$

$$c_{2}(t) = \cos(2\pi f_{a}t + \alpha_{1}) + \cos(2\pi f_{b}t + \beta_{1}),$$

$$c_{3}(t) = \cos(2\pi f_{a}t + \alpha_{2}) + \cos(2\pi f_{b}t + \beta_{2}),$$

$$c_{4}(t) = \cos(2\pi f_{a}t + \alpha_{3}) + \cos(2\pi f_{b}t + \beta_{3}),$$

and the resulting DSB-SC signals are summed and transmitted over a common channel. In the receiver, demodulation is achieved by multiplying the sum of the DSB-SC signals by the four carrier signals separately and then filtering to remove the unwanted components.

- (a) Determine the conditions that the phase angles $\{\alpha_i\}$ (i = 1, 2, 3) and $\{\beta_j\}$ (j = 1, 2, 3) must satisfy so that the output of the kth demodulator is $m_k(t)$ for k = 1, 2, 3, 4.
- (b) Determine the minimum separation of the carrier frequencies f_a and f_b relative to the bandwidth of the input signals in order to ensure satisfactory operation of the system.
- 4. Problem 2.15 (you can use Matlab)
- 5. Problem 2.17
- 6. Problem 2.21