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8.4 Deterministic Distortion

Impairments that can affect data transmission over telephone channels can be
classified as being one of two types: deterministic impairments or random im-
pairments. Deterministic impairments include amplitude distortion, delay dis-
tortion, nonlinearities, and frequency offset. These impairments are deterministic
in that they can be measured for a particular transmission path and they do
not change perceptibly over a relatively short period of time. On the other
hand, random impairments include Gaussian noise, impulsive noise, and phase
jitter. Clearly, these random disturbances require a probabilistic description,
and hence are treated in a later chapter.

Amplitude distortion and delay distortion can cause intersymbol interfer-
ence, which decreases the system margin against noise. The magnitude response
of a “typical” telephone channel is sketched in Fig. 8.4.1. Note that what is
shown is not “gain versus frequency,” but “attenuation versus frequency.” It is
quite evident that the amplitude response as a function of frequency between
200 and 3200 Hz is far from flat, and hence certainly not distortionless.

A demonstration of the detrimental effects of a nonflat frequency response
is obtainable by considering the classic example of a filter with ripples in its
amplitude response. In particular, we wish to examine the time-domain response
of a system with the transfer function

H(w) = [1 + 2¢ cos wtole /", (8.4.1)
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FIGURE 8.4.1 Magnitude response of a typical telephone channel.
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where |¢| < 4. It should be evident to the reader that |H(w)| has ripples of maxi-
mum value +2¢ about 1 and that the phase of H(w) is linear. We thus have
amplitude distortion only. Rewriting Eq. (8.4.1), we obtain

H((D) _ [1 + 8(ejcoto + e“imto)]e‘jwtd
— oIl | goioto=ta) | o= joltot1a) (8.4.2)

For a general input pulse shape, say x(t), the time-domain response of the filter
in Eq. (8.4.2) is

y(t) = x(t — tg) + ex(t — tg + to) + ex(t — tg — to). (8.4.3)

The ripples in the magnitude response of H(w) have thus generated scaled
replicas of x(t) that both precede and follow an undistorted (but delayed) ver-
sion of the input. These replicas of x(t) have been called “echoes” in the liter-
ature. Depending on the value of ¢y, we find that the echoes can interfere
with adjacent transmitted pulses, yielding intersymbol interference, and/or the
echoes can overlap the main output pulse x(t — t,), also causing distortion.
Sketches of these various cases are left as a problem.

A filter (or channel) with ripples in the phase but a flat magnitude response
will also cause echoes. To demonstrate this claim, we consider the transfer
function

H(w) = exp{—j[wt, — € sin wty]} (8.4.4)

with |e| « m. To proceed, we note that e Je%a represents a pure time delay and
that

giesinoto — cog [ sin wty] + j sin [¢ sin wt,). (84.5)

Since |¢| « m, we can approximate Eq. (8.4.5) as

efesin®lo ~ 1 4 jg sin wt,, (8.4.6)
)
. e e _.
Hw)=e "”"’[1 +5 elv — 7€ "’"0]- (8.4.7)

For a general input pulse shape x(t), then, the filter output is approximately

W) = x(t — tg) + % Xt =ty + to) — = X(t — tg — to) (8.4.8)

5 X
and again we have echoes.

We have not established as yet that phase distortion is actually significant
over telephone channels. Since the telephone network was originally designed
with only voice signals in mind, there is considerable phase nonlinearity over
telephone channels. Voice communication is relatively unaffected by the phase
nonlinearities present, but as we have seen, data transmission can be impaired
significantly. Phase information for a telephone channel is not usually expressed
as a system phase response, due to the difficulty of establishing an absolute
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phase reference and the necessity to count modulo 27 or 360°. To obtain phase
information, a related quantity called envelope delay is measured instead.

The envelope delay is defined as the rate of change of the phase versus fre-
quency response, and hence can be expressed as

—d
tp = — 7] N 849
R~ 10 (w) ( )
where 6(w) is the channel phase in radians and t5 denotes the envelope delay
in seconds. A related quantity is the phase delay or carrier delay, which is defined
as the change in phase versus frequency, and it is expressible as

A C) (8.4.10)

c 9

w

where ¢, denotes the phase or carrier delay. These definitions are instrumental
to the measurement of phase distortion over a channel, and the following deri-
vation illustrates the reasoning behind their names as well as the technique
used to measure the envelope delay.

We consider a bandpass channel with a constant magnitude response,
|H(w)| = K, but with a nonlinear phase response, /H(w) = 6(w). If the input
to this channel is a narrowband signal

x(t) = m(t) cos w.t, (8.4.11)

we wish to write an expression for the channel output, denoted y(t), in terms

of the envelope delay and the phase delay. To begin, we assume that the phase .

nonlinearity is not too severe, and thus we can expand the phase in a Taylor’s
series about the carrier components + .. About @ = +w,, we have
df(w)

6(w) = B(w,) + (0 — ) o

, (8.4.12)

W=,

where higher-order terms are assumed negligible. At the frequency of interest,
namely w = +o,, we know that

tg = _ @) (8.4.13)
do |p=o,
and
O(w
c= ——(w—) e (8.4.14)
SO
B(w) = —wt, + (@ — 0)(—tg) = —@l — (0 — WJg. (8.4.15)
Similarly, about = —w,, we find that

() = ot — (@ + O)tg. (8.4.16)
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Letting M(w) = Z {m(t)} and Y(w)= F{y(t)}, we can write the channel
response as

Y(w) = % Mo — o) + M@ + »)]e?®

= %— [M(w — @)e® + M(ow + o)e”]. (8.4.17)

Since M(w — w,) is located about w = +w, and since M(w + w,) is located
about w = —m,, we make the appropriate substitutions into Eq. (8.4.17) using
Eqgs. (8.4.15) and (8.4.16), respectively. Hence

Y(co) — % [ M(w — wc)eﬁ —octe (@ = we)tr] 4 M(w + wc)ej[“’"‘  Cha wc)m]]

= % e iR M(w — w e folt~t" + M(w + w)e*!"'"T].  (8.4.18)

Therefore, using Fourier transform properties we obtain
K jwclt —tc +tR] — jocft —tc +tRr]
y(0) = 5 [miejeiodt =t 1) 4 mige ook THe TN o o

= Km(t — tg) cos [w(t — t)] (8.4.19)

Only the envelope m(t) is delayed by tg, hence tg is called the envelope delay,
while only the carrier is delayed by ¢, hence the name carrier delay.

The method used to measure the envelope delay over real channels satisfies
the assumptions used in the derivation. For example, m(t) is selected to be a
low-frequency sinusoid, say cos w,t, so that we have w, + w,, = . and hence
the phase nonlinearity will not be too bad over this region. We can also neglect
higher-order terms in the Taylor’s series since our range of frequencies of interest
is w, — v, <w < w, +w, and w,, is small. To measure tg, the derivative is
approximated by Af(w)/Aw, where Aw = w,,, and the phase of the received
envelope cos (w,t — w,tg) is compared to the transmitted envelope to yield
AB(w) = w,tg. Taking the ratio yields the envelope delay.

Results published by Sunde [1961] clearly demonstrate the effects of phase
distortion on data transmission. For zero phase distortion, the phase response
should be linear, and hence the envelope delay should be constant. Figure
8.4.2 shows plots of 100% roll-off raised cosine pulses subjected to quadratic
envelope delay distortion. To obtain these plots, Sunde [1961] inserted delay
distortion, which increased quadratically from 0 at w = 0 to some final value
at w = w,,,. As the envelope delay increases, the pulse amplitude is reduced
and the pulse peak no longer occurs at the desired sampling instant. Further-
more, the zero crossings become shifted and the trailing pulse becomes large
enough in amplitude to interfere with adjacent pulses. Obviously, delay distor-
tion or phase distortion can be exceedingly detrimental in data transmission.
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FIGURE 8.4.2 Raised cosine pulses with quadratic delay distortion. From E. D.
Sunde, “Pulse Transmission by AM, FM, and PM in the Presence of Phase
Distortion,” Bell Syst. Tech. J., © 1961 AT&T Bell Laboratories.

8.5 Eye Patterns

A convenient way to see the distortion present on a channel is to display what
is called the system eye pattern or eye diagram. The eye pattern is obtained by
displaying the data pulse stream on an oscilloscope, with the pulse stream ap-
plied to the vertical input and the sampling clock applied to the external trigger.
A drawing of a two-level eye pattern is shown in Fig. 8.5.1, and the source of
its name is clearly evident. Typically, one to three pulse (symbol) intervals are
displayed and several kinds of distortion are easily observed. For minimum
error probability, sampling should occur at the point where the eye is open
widest. If all of the traces go through allowable (transmitted) pulse amplitudes
only at the sampling instants, the eye is said to be 100% open or fully open. A
fully open eye pattern for three-level pulse transmission is sketched in Fig. 8.5.2.
The eye pattern is said to be 807 open if, at the sampling instant, the traces
deviate by 20% from the fully open eye diagram. This degradation is some-
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FIGURE 8.5.1 Two-level eye diagrams: (a) Two-level pattern (distortionless);
(b) two-level eye pattern with timing jitter.

FIGURE 8.5.2 Three-level eye pattern.

times expressed as a loss in signal-to-noise ratio (S/N) by S/N = 20 log,, 0.8 =
— 1.9 dB, where the minus sign indicates a degradation in S/N.

The distance between the decision thresholds and adjacent received pulse
traces at the sampling time is the margin of the system against additional noise.
As the sampling time is varied about the time instant of maximum eye opening,
the eye begins to close. The rate that the eye closes as the sampling instant is
varied is an indication of the system’s sensitivity to timing error. Jitter in received
zero crossings (or threshold crossings) can be particularly insidious, since many
receivers extract timing information by averaging zero crossings. The various
kinds of distortion are labeled in Fig. 8.5.1.




