ECE 146B Spring 2009
Gibson Homework No. 1 Due: April 7, 2009

1. Given a Gaussian random variable X with mean 1 and variance 4, find the probability that X
is greater than 5.

2. Problem 7.2 in the text.
3. Problem 7.4 in the text.

4. The attached derivation is from Appendix A of the Second edition of my book Principles of
Digital and Analog Communications, Macmillan/Prentice-Hall, 1993. Note that the first and
second editions are quite different. The problem assignment is: Write out this derivation in the
notation of the current textbook, verifying each step in the process. This result will be used
repeatedly in the course.



A.10 Cyclostationary Processes

A common model of transmitted sequences in digital communications systems
is given by

XO0= 3 aplt—nT), (A101)

where p(t) is the pulse shape, T, is the symbol duration, and {a,} is a WSS
sequence with E{a,} = u, and E{a,a,} = E{aa;.,} = Ry(k), k = |n — m|. We
would like to find the power spectral density of X(t). The mean of X(t) is
immediately available as

E[X®]=p 3 plt—nT), (A.102)

n= -0
and the autocorrelation is given by

Ry(ty, 15) = E[X(1,)X(t,)]
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k=—wm = -0

From Egs. (A.10.2) and (A.10.3) it is clear that the sequence X(¢) is not WSS.
As a result, the power spectral density cannot be defined using Eq. (A.9.1).
Random processes that satisfy the relations

E[Y(t, + T)] = E[Y(t,)] (A.10.4)
and

RY(II '+’ T, tz + T) = RY(tl’ tz) (A.IO.S)

are called cyclostationary because they are periodic in their time arguments
[Franks, 1969]. We see from Egs. (A.10.2) and (A.10.3) that the sequence X(t)
is a cyclostationary process. Fortunately, X(¢) can be modified to obtain a WSS
process by allowing a random time delay.

Consider a new sequence

o0

X(t) = Z a,p(t —nT, — 1), (A.10.6)

H= —o00

T
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where A is a uniformly distributed random variable over 0 < t < T indepen-
dent of a,. Then

EX0]= 3 wElp(t—nT,— ]

© 1 pr,
=ua"=§;®_ﬁfo p(t — nT, — 3)di

a & t—nTs ua ©
- "7{" 2y fz-(n-n)r, ple)da =70 |__p()ds,  (A10.7)

which is a constant. Further,

Ry(ty, t;) = E[X(21)X(t,)]
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where t = |t, — t,| and
R (1) = f © ppl + 7). (A.10.9)

Since Ryl(ty, t,) = Ry(|t; — t;]) and E[X(#)] = constant, X(t) in Eq. (A.10.6) is
WSS.

To simplify Eq. (A.10.8) further, assume that the a, sequence is statistically
independent (but not zero mean),

R(K) = E[a,a,+,] = {f: z o Z z 8’ (A.10.10)
where 62 = E[aZ] — u2. Then, Eq. (A.10.8) yields
| o pa &
Ry() = yfa) + 7 3, Ayfc ~ KT (A.10.11)
Using Eq. (A.10.9),
S,0) = F{R (1)} = |P)), (A.10.12)

where P(w) = # {p(t)},‘ we can write several different useful expressions for the
power spectral density. Taking the Fourier transform of Eq. (A.10.8), we get
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the general relationship
Sx(w) = -%- |P(w)l2 R 0) + 71: R a(k)l P(w)i2e-jwk1‘,

_|P@)* |P(w)|? {
T,

Based on the assumptions in Eq. (A.10.10), we can start with Eq. (A.10.11) re-
written as

A0) +2 Z R, (k) cos kT } (A.10.13)

KT

2

2
R =2 0)+ 52 3 R0)edz—KT)  (A1014)

T? =,
and take the Fourier transform to get

27:145 i (an)
k= s

Equations (A.10.13) and (A.10.15) find application in several chapters of the
book.

0.2
Sx(@) = 2 |P@)P +

?5/(w - 2;‘,“). (A.10.15)
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