1. Given a Gaussian random variable X with mean 1 and variance 4 , find the probability that X is greater than 5.
2. Problem 7.2 in the text.
3. Problem 7.4 in the text.
4. The attached derivation is from Appendix A of the Second edition of my book Principles of Digital and Analog Communications, Macmillan/Prentice-Hall, 1993. Note that the first and second editions are quite different. The problem assignment is: Write out this derivation in the notation of the current textbook, verifying each step in the process. This result will be used repeatedly in the course.

A. 10 Cyclostationary Processes

A common model of transmitted sequences in digital communications systems is given by

$$
\begin{equation*}
X(t)=\sum_{n=-\infty}^{\infty} a_{n} p\left(t-n T_{s}\right) \tag{A.10.1}
\end{equation*}
$$

where $p(t)$ is the pulse shape, T_{s} is the symbol duration, and $\left\{a_{n}\right\}$ is a WSS sequence with $E\left\{a_{n}\right\}=\mu_{a}$ and $E\left\{a_{n} a_{m}\right\}=E\left\{a_{t} a_{l+k}\right\}=R_{a}(k), k=|n-m|$. We would like to find the power spectral density of $X(t)$. The mean of $X(t)$ is immediately available as

$$
\begin{equation*}
E[X(t)]=\mu_{a} \sum_{n=-\infty}^{\infty} p\left(t-n T_{s}\right), \tag{A.10.2}
\end{equation*}
$$

and the autocorrelation is given by

$$
\begin{align*}
R_{X}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[a_{n} a_{m}\right] p\left(t_{1}-n T_{s}\right) p\left(t_{2}-m T_{s}\right) \\
& \left.=\sum_{k=-\infty}^{\infty} R_{a}(k) \sum_{n=-\infty}^{\infty} p\left(t_{1}-n T_{s}\right) \not\right)\left(t_{2}-(k+n) T_{s}\right) . \tag{A.10.3}
\end{align*}
$$

From Eqs. (A.10.2) and (A.10.3) it is clear that the sequence $X(t)$ is not WSS. As a result, the power spectral density cannot be defined using Eq. (A.9.1).

Random processes that satisfy the relations

$$
E\left[Y\left(t_{1}+T\right)\right]=E\left[Y\left(t_{1}\right)\right]
$$

and

$$
\begin{equation*}
R_{Y}\left(t_{1}+T, t_{2}+T\right)=R_{Y}\left(t_{1}, t_{2}\right) \tag{A.10.5}
\end{equation*}
$$

are called cyclostationary because they are periodic in their time arguments [Franks, 1969]. We see from Eqs. (A.10.2) and (A.10.3) that the sequence $X(t)$ is a cyclostationary process. Fortunately, $X(t)$ can be modified to obtain a WSS process by allowing a random time delay.

Consider a new sequence

$$
\begin{equation*}
X(t)=\sum_{n=-\infty}^{\infty} a_{n} p\left(t-n T_{s}-\lambda\right), \tag{A.10.6}
\end{equation*}
$$

where λ is a uniformly distributed random variable over $0 \leq t<T_{s}$ independent of a_{n}. Then

$$
\begin{align*}
E[X(t)] & =\sum_{n=-\infty}^{\infty} \mu_{a} E\left[p\left(t-n T_{s}-\lambda\right)\right] \\
& =\mu_{a} \sum_{n=-\infty}^{\infty} \frac{1}{T_{s}} \int_{0}^{T_{s}} p\left(t-n T_{s}-\lambda\right) d \lambda \\
& =\frac{\mu_{a}}{T_{s}} \sum_{n=-\infty}^{\infty} \int_{t-(n+1) T_{s}}^{t-n T_{s}} p(\alpha) d \alpha=\frac{\mu_{a}}{T_{s}} \int_{-\infty}^{\infty} p(t) d t, \tag{A.10.7}
\end{align*}
$$

which is a constant. Further,

$$
\begin{align*}
R_{\boldsymbol{X}}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[a_{n} a_{m}\right] \int_{0}^{T_{s}} \frac{1}{T_{s}} p\left(t_{1}-n T_{s}-\lambda\right) p\left(t_{2}-m T_{s}-\lambda\right) d \lambda \\
& =\sum_{k=-\infty}^{\infty} R_{a}(k) \frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} \int_{0}^{T_{s}} p\left(t_{1}-n T_{s}-\lambda\right) p\left(t_{2}-(n+k) T_{s}-\lambda\right) d \lambda \\
& =\frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} R_{a}(k) \sum_{n=-\infty}^{\infty} \int_{t_{1}-(n+1) T_{s}}^{t_{1}-n T_{s}} p(\alpha) p\left(\alpha+\tau-k T_{s}\right) d \alpha \\
& =\frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} R_{a}(k) \int_{-\infty}^{\infty} p(t) p\left(t+\tau-k T_{s}\right) d t \\
& =\frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} R_{a}(k) \mathscr{R}_{p}\left(\tau-k T_{s}\right) \tag{A.10.8}
\end{align*}
$$

where $\tau=\left|t_{2}-t_{1}\right|$ and

$$
\begin{equation*}
\mathscr{R}_{p}(\tau)=\int_{-\infty}^{\infty} p(t) p(t+\tau) d t . \tag{A.10.9}
\end{equation*}
$$

Since $R_{X}\left(t_{1}, t_{2}\right)=R_{X}\left(\left|t_{2}-t_{1}\right|\right)$ and $E[X(t)]=$ constant, $X(t)$ in Eq. (A.10.6) is WSS.

To simplify Eq. (A.10.8) further, assume that the a_{n} sequence is statistically independent (but not zero mean),

$$
R_{a}(k)=E\left[a_{n} a_{n+k}\right]= \begin{cases}\mu_{a}^{2}, & k \neq 0 \tag{A.10.10}\\ \sigma_{a}^{2}+\mu_{a}^{2}, & k=0,\end{cases}
$$

where $\sigma_{a}^{2}=E\left[a_{n}^{2}\right]-\mu_{a}^{2}$. Then, Eq. (A.10.8) yields

$$
\begin{equation*}
R_{X}(\tau)=\frac{\sigma_{a}^{2}}{T_{s}} \mathscr{R}_{p}(\tau)+\frac{\mu_{a}^{2}}{T_{s}} \sum_{k=-\infty}^{\infty} \mathscr{R}_{p}\left(\tau-k T_{s}\right) . \tag{A.10.11}
\end{equation*}
$$

Using Eq. (A.10.9),

$$
\begin{equation*}
S_{p}(\omega)=\mathscr{F}\left\{\mathscr{R}_{p}(\tau)\right\}=|P(\omega)|^{2}, \tag{A.10.12}
\end{equation*}
$$

where $P(\omega)=\mathscr{F}\{p(t)\}$, we can write several different useful expressions for the power spectral density. Taking the Fourier transform of Eq. (A.10.8), we get
the general relationship

$$
\begin{align*}
S_{X}(\omega) & =\frac{1}{T_{s}}|P(\omega)|^{2} R_{a}(0)+\frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} R_{a}(k)|P(\omega)|^{2} e^{-j \omega k T_{s}} \\
& =\frac{|P(\omega)|^{2}}{T_{s}}\left\{R_{a}(0)+2 \sum_{k=1}^{\infty} R_{a}(k) \cos k \omega T_{s}\right\} . \tag{A.10.13}
\end{align*}
$$

Based on the assumptions in Eq. (A.10.10), we can start with Eq. (A.10.11) rewritten as

$$
\begin{equation*}
R_{X}(\tau)=\frac{\sigma_{a}^{2}}{T_{s}} \mathscr{R}_{p}(\tau)+\frac{\mu_{a}^{2}}{T_{s}^{2}} \sum_{k=-\infty}^{\infty} \mathscr{R}_{p}(\tau) * \delta\left(\tau-k T_{s}\right) \tag{A.10.14}
\end{equation*}
$$

and take the Fourier transform to get

$$
\begin{equation*}
S_{X}(\omega)=\frac{\sigma_{a}^{2}}{T_{s}}|P(\omega)|^{2}+\frac{2 \pi \mu_{a}^{2}}{T_{s}^{2}} \sum_{k=-\infty}^{\infty}\left|P\left(\frac{2 k \pi}{T_{s}}\right)\right|^{2} Y_{\delta}\left(\omega-\frac{2 k \pi}{T_{s}}\right) . \tag{A.10.15}
\end{equation*}
$$

Equations (A.10.13) and (A.10.15) find application in several chapters of the book.

