
ECE 146B         Spring 2009 
Gibson    Homework No. 1    Due:  April 7, 2009 

 

1.  Given a Gaussian random variable X with mean 1 and variance 4, find the probability that X 
is greater than 5. 

2.  Problem 7.2 in the text. 

3.  Problem 7.4 in the text. 

4.  The attached derivation is from Appendix A of the Second edition of my book Principles of 
Digital and Analog Communications, Macmillan/Prentice-Hall, 1993.  Note that the first and 
second editions are quite different.  The problem assignment is:  Write out this derivation in the 
notation of the current textbook, verifying each step in the process.  This result will be used 
repeatedly in the course. 



A.10 Cyclostationary Processes 

A common model of transmitted sequences in digital communications systems 
is given by 

OC) 

X(t) = L anP(t - nTs), (A.lO.l) 
n=-OC) 

where pet) is the pulse shape, Ts is the symbol duration, and {an} is a WSS 
sequence with E{an} = Jla and E{ anam} = E{a,a,+k} = Rik), k = In - mi. We 
would like to find the power spectral density of X(t). The mean· of X(t) is 
immediately available as 

oc; 

E[X(t)] = Jla 2: p(t - nTs), (A.lO.2) 
n - oc; 

and the autocorrelation is given by 

Rx(t 1, t 2) = E[X(t1)X(t2 )] 

OC) oc; 

= 2: 2: E[anam]p(t1 - nTs)P(t2 - mTs) 
n=-oc; m=-oo 

= f Ra(k) f P(tl - nTJI(t2 - (k + n)Ts)· (A.10.3) 
k=-oc; n=-oc; 

From Eqs. (A.10.2) and (A.10.3) it is clear that the sequence X(t) is not WSS. 
As a result, the power spectral density cannot be defined using Eq. (A.9.1). 

Random processes that satisfy the relations 

and 

(A. 10.4) 


(A. 10.5) 


are called cyclostationary because they are periodic in their time arguments 
[Franks, 1969]. We see from Eqs. (A.1O.2) and (A.10.3) that the sequence X(t) 
is a cyclostationary process. Fortunately, X(t) can be modified to obtain a WSS 
process by allowing a random time delay. 

Consider a new sequence 

X(t) = L
00 

anP(t - nTs - J), (A.10.6) 
n=-OC) 
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where ). is a uniformly distributed random variable over 0 < t < Ts indepen­
dent of all' Then 

ro 
E[X(t)] = L JlaE[p(t - nTs - ).)] 

II""-ro 

i'-IITsJla ~ ( ) d Jla fro ( ) d= - L. P rt rt = - P t t, (A.10.7)
Ts 11= ro 1-(11+ 1)Ts Ts -ro 

which is a constant. Further, 

I ro fro =Ts "h. ro Rik) - ro p(t)p(t + t - kTs) dt 

I ro 
= Ts "h. ro Rik)Blit - kTs), (A.IO.8) 

where t = It2 - t11 and 

Blit ) = f~ro p(t)p(t + t) dt. (A.10.9) 

Since Rx(t1, t2) = Rx(lt 2 - t11) and E[X(t)] = constant, X(t) in Eq. (A.10.6) is 
WSS. 

To simplify Eq. (A.10.8) further, assume that the all sequence is statistically 
independent (but not zero mean), 

k¥=O 
Rik) = E[anaIlH] = {Jl~' 2 (A.10.10) 

U a + Jla' k =0, 

where u; = E[a;] - Jl;. Then, Eq. (A.10.8) yields 

. u2 Jl2 ro 

Rx{t) = ;., Bl,{t) + ;., ,,=~ ro Bl,(t - kTJ. (A.10.11) 


Using Eq. (A.IO.9), 

(A.10.12) 


where P(m) = iF{p(t)} , we can write several different useful expressions for the 
power spectral density. Taking the Fourier transform of Eq. (A.IO.8), we get 
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the general relationship 

Sx(ro) = ~s Ip(ro)12 RiO) + ~s k=~ 00 Rjk)IP(ro)12e- jrokT. 

= IP~:12 {R.(O) +2 '~l,R~ cos kWT} (A.10.13) 

Based on the assumptions in Eq. (A.10.10), we can start with Eq. (A.lO.U) re­
written as 

(12 112 00 

Rx(r) = ~ 9fir) + T: k=1::. 00 91,{'r) * b(r - kTs) (A.lO.l4) j 
and take the Fourier transform to get 

. Sx(ro) = (1; IP(ro)12 + 2TC~; f p(2kTC) 2 ~(ro _ 2kTC). r(A.lO.lS)
Ts Ts k= -00 Ts Ts 

Equations (A.10.l3) and (A.lO.lS) find application in several chapters of the 
book. 
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