Discrete-time equivalents

Continuous to discrete transforms in state-space

We have several ways of calculating a discrete-time transfer function from a continuous-time

one, depending on the application.

ZOH Equivalence

y(k) y(t) u(t) u(k) P(s)
Piz)=(1-212 :
b P(s) ZOH (2) = ( Z){s}
Controller approximation
dx(t)
z(t
Q 1 dt Forward difference:  C'(2) = C(s) [ =z
s
Backward difference:  C(z) = C(s) |,—=
x(k) z(k+1)
o 21 o Tustin/bilinear: C(z) = CO(s) | ,_2 -
T T (2+1)
Roy Smith: ECE 147b 10: 1
ZOH _equivalence in state-space
ZOH Equivalence
dx(t
y(k) y(t) —— u(t) u(k) O~ As) + Buty
h P(s) JOH P(s)
y(t) = Cx(t) + Du(t).

We would like to get a description of the form,

Cax(k)

+ By u(k)
+ Dd u(k)

xz(k+1)

P(z)
y(k)

Approach: Solve the state equation over one sample period.

3 CAt X
() 0) + /0

And over a single sample period (kT to kT + T') this is,

t
A=) Bu(r)dr,

KT+T
c(kT+T) = AT x(kT) + / ARTHT=T) By(7) dr,
kKT

Roy Smith: ECE 147b 10: 2




ZOH equivalence in state-space

Key observation

The integration involves u(7) from 7 = kT to 7 = kT + T.

But u(7) is constant over this time period. It is the output of a ZOH.
So, u(t) = u(k) for kT <7 < kT +T.

Therefore,

KT+T

e(kT+T) = AT x(kT) + Uk

ARTHT=1) B dT7:| u(k).
T

By our sampling definitions, z(t) |—rr= x(k), so

r(k+1) = eMTak) + [ ;;FT+T eARTHT=1) BdT,} u(k).
= Ay l‘(k‘) + By ’U,(k‘)7
KT4+T

where, A;=eT, and By= / eART+T=") B 4.
kT

To simplify the By integral define n = kT + T — 7 to get,
T
By = / e B dn.
0

Roy Smith: ECE 147b 10: 3

ZOH equivalence in state-space

ZOH equivalent

So far we have calculated z(k + 1) as a linear function of z(k) and u(k). What about y(k)?
y(kT) = Cx(kT) + Du(kT).

By definition, y(k) = y(kT'), and as wu(t) is constant over the sample period, u(k) = u(kT).
y(k) = Cax(k) + Du(k).

Clearly then, Cy = C and D; = D.

T
{A B} o eAT /eA"Bdn
0
C | D o 5

Aq and By are calculated via MATLAB commands c¢2d or zohequiv.

Roy Smith: ECE 147b 10: 4




Controller approximations in state-space

dx.(t)
u(t) z(t) dt e(t)
C 1/s1 + B
A
D
u(k) xo(k) z(k+1) e(k)
Cy EaRl + By
Ag
Dy
Roy Smith: ECE 147b 10: 5
Controller approximations in state-space
Controller (continuous-time)
u(s) e(s) dee(t) - _ Az.(t) + Be(t)

1 T —1
Forward difference approximation - & or s~ :
s z—1 T
Take a Laplace transform of the controller equations,
sxe(s) = Auz.(s) + Be(s)
u(s) = Cuacs) + De(s),
. z—1
and substitute, s = ——,  x(s) = z(z2), e(s)=e(z) and u(s) =u(z).

T

This effectively replaces the 1/s block with a forward difference approximation to integration,
and relabels all of the signals in the diagram as discrete-time signals.

Roy Smith: ECE 147b 10: 6




Forward difference approximation

The result of these substitutions is,

——1x.(2) = Auz.(z) + Be(z)
w(z) = Cuxz) + De(z).
This is easily rearranged to get,
(z=1)x(2) = AT xz.(2) + BTe(z) zx.(z) = (I+AT)z.(z) + BTe(z)
or,
w(z) = Cua.(z) + De(z), u(z) = Cua.(z) + De(z).
This is now in discrete-time state-space form,
z(k+1) = (I+ AT)z.(k) + BT e(k)
u(k) = Cuak) + De(k).

Clearly then,
Ay = I+AT, By =BT, Cy=C and D; = D.

Roy Smith: ECE 147b 10: 7

Forward difference approximations:

Poles of C(z)? Compare the eigenvalues of A4 to A.
Ag = I+ AT

Exercises: Use the determinant definition of eigenvalues to show:

1. multiplying a matrix by a scalar multiplies all of the eigenvalues by the scalar;

2. adding the identity to a matrix adds 1 to all of the eigenvalues.

Eigenvalue/pole mapping result:

Imaginary . . Imaginary
Mapping via
s-plane forward z-plane
difference
approximation
-1 1
Real Real

Exercise: Repeat this for the backward difference and bilinear approximations.

Roy Smith: ECE 147b 10: 8




Continuous-time delay equivalences

Delays at the plant input:

y(k) y(t) u(t) u(k)
P(s) e s ZOH

This can arise in several ways:
1. The plant has a transport delay at its input. For example a flow delay in a process
control system.
2. The delay may actually be introduced by the calculation time of the controller (fraction

of a sample period).

The integer sample period part of any delay easy to handle. If the delay is mT" seconds then

m

simply augment the plant with 27"

The fractional part is harder. ..

Roy Smith: ECE 147b 10: 9

Fractional plant input delays

Controller timing diagram: Fast sampling with respect to calculation time.
Define an intermediate variable to calculate u(k) as fast as possible.
v(k) = Cuax(k)

uwlk) = wv(k) + De(k)
z(k+1) = Aux.(k) + Be(k)

sample e(kT) output u(kT) sample e(kT+T)
t=kT t=kT +\ t=kT+T
<— A second delay ——| time
[seconds]

1/0 operations: |[read A/D|  [write D/A|

u(kT) = v(kT)+De(kT) calculation:
X(kT+T) = Ax(kT)+Be(kT) calculation: [ ]

v(kT+T) = Cx(kT+T) calculation: [] wait

store u(kT)'  store x( kT+T)T {
store v(kT+T)

Computation causes a delay (A seconds) between controller input, e(k), and output, u(k).

Roy Smith: ECE 147b 10: 10




Fractional plant input delays

Deriving the state-space representation

The approach is the same as before, solve the state equation between ¢t = kT and t = kT + T.

Because of the A second delay (note that A < T), the state and output equations are now
KT+T

s(kT+T) = T a(kT) + / ARTH=T) Buy(r — ) dr,
kT

y(kT) = Cuz(kT) + Du(kT — \).

Key observation: u(t) now has two constant values over the sample period:

k—1 for kKT <t < kT + X\
u(t—)\)—{u( ) or kT <t < kT + A,

u(k) for kT + A<t <kT +T
(_\u(k)
u(r) u(t-\) kel
u(k-1)
Time
T T T T
kT-T kT kT+\ kT+T kT+2T

Roy Smith: ECE 147b 10: 11

Fractional plant input delays

Solving the state equation

We now split the state equation integral into two pieces, corresponding to the times when the
input is constant.

KT+T

ET+A
zk+1) = eTa(k) + / AR Boy(r — N) dr + / AFTHT=N B y(n — X) dn
kT KT+
KT4+A KT+T
= Mak) + {/ AT g dT:| u(k —1) + {/ AFTHT=0 B i | u(k)
kT KT+

Define ¢ = kT — 7 4+ A which means that d§ = —dr and,

T=kT = (=,
T=kT+ )\ = £=0.

This takes care of the first integral,

A kT+T
z(k+1) = ATa(k) + U 0A<T’“@Bd§} u(k —1) + U CA("'T*T”’)Bdn] u(k)
0 kT+A

kT+T

A
_ eAT.Z(k‘) + |:eA(T—)\)/ eAfB d£:| ’U,(k‘ o 1) + |:/ eA(k:TJrT*TZ)B dn] ?J,(k)
0 k

T+

Roy Smith: ECE 147b 10: 12




Fractional plant input delays

Solving the state equation

So far we have,
A KT+T
w(k+1) = (k) + {e“*” / B dg] u(k —1) + { / AFTHT= B | (k)
0 ET+A
Define: ¢ = kT + T — n which means that d¢ = —dn and now,
n=klI'+\ = (=T -\,
n=kl'+T = (=0.

This takes care of the second integral,

ek +1) = T (k) + {GA(T—A)/O*eAdeg] u(k—1) + {/0

A
B dg} u(k)
We can now calculate all of the matrix terms, but it is still not quite in state-space form

(because z(k + 1) depends on both w(k) and u(k — 1)).

To fix this augment the state with u(k — 1).
To do this define,

w(k) = u(k —1) and so, w(k+1) = u(k) < this is a new state equation

Roy Smith: ECE 147b 10: 13

Fractional plant input delays

Putting all the pieces together

The transformed state equation is now,

A
z(k+1) eAT eA(T”‘)/ eA‘de§ x(k)
0

T—\
/ N BdcC
+ 0

w(k +1) 0 0 w(k) I

u(k).

To get the output equation note that u(k7T — \) = u(k —1) = w(k), so,

y(kT) = Cuz(kT) + Du(kT — \)
means that,
y(k) = [C D] B((];ﬂ + 0u(k).

When might we do this?
This adds an additional nu states to our state-space description.

It is only worth doing this when the sampling time is close to the cross over frequency. In this
case the delay could have a significant effect and we will need a precise model like this one.

Roy Smith: ECE 147b 10: 14




