State Estimation

Reduced order estimation

In many cases we have a partial measurement of the state, and need only estimate the
remaining states.

This allows us to use a reduced order estimator. If we can measure m of the nz states, then
we need only estimate the na — m remaining states. What is the resulting controller order?

This allows us to implement simpler controllers.
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Reduced order estimation

Example: Inverted pendulum.

The states are:

p | cart position measured
v | cart velocity not measured
0 | pendulum angle measured

pendulum angular velocity | not measured

Use a reduced order estimator to estimate cart velocity, v, and pendulum angular velocity, w.

The state feedback is then,

p(k)
N (k)| «— estimated
u(k) =K o(k)
w(k)] +— estimated

How does this differ from simply estimating “rate of change” on each of the two
measurements?
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Reduced order estimation

Detalils

To work out the details divide the states into two groups,

2.(2)  Measured states,

zp(2)  Unmeasured states (to be estimated).

with an associated state-space representation,

) = [ ) Bl + [3] 0
yk) = [ 1 0] [fbgm

Basic idea: Rearrange unmeasured state equation to make it look like a standard estimation
problem.

Examine the unmeasured state update equation,
xb(k —+ 1) = A[,], J?[,(k) + A],,, {Ea(k) —+ B;,u(k)
[ e —
“known” input =: w(k)
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Reduced order estimators

Details (continued)

We can rearrange the z,(k + 1) equation to get something like a standard measurement
equation.

vo(k+1) — Awx(k) — Bou(k) = Agap(k)

“known” measurement =: v(k)

This gives a smaller state-space system involving only the unmeasured states,

awk+1) = Apay(k) + w(k)
v(k) = Awpxy(k)

Note that this looks like a standard system with the substitutions,
A — Ap, C — Ap

Ackermann’s equation lets us design L, to place the poles of: Ay, — L, Ag.
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Reduced order estimators

Estimator equations
Implementing this estimator gives,
ib(k-l‘ 1) = Abbib(k‘) + AbaZa(k) + Bbu(k)
+ L, [za(k+1) — Awezo(k) — Bou(k) — Aw&p(k)] -

Estimator error dynamics

S0,
Tk +1) = xp(k+1) — &k + 1),

= Ayra(k) + Apay(k) + Boutk) — Awin(k) — Awaa(k) — Bputk)

- Lz'xn(k"' 1) + Lz-Arm,xn,(k) + L?'Bn, u(k) + LTA(L’)‘/ZA?[)(’C):'

= Abb:vb(k) - Abbfjb(kf)
—Lozg(k+1) + LAwaa(k) + LByu(k) + LyAgdy(k).
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Reduced order estimators

Estimator error dynamics

ap(k+1) = Apay(k) — Apapk) — Lyza(k+1)
+LI'A(L(L 1'“(]{‘) + LI'B(l u(k) + L/'Aub j'b(]‘)

Recall that we know how to calculate z,(k + 1),
Tk +1) = Agaxo(k) + Amp (k) + Bou(k),

and substituting this gives,
531,(1€+ 1) = Abb;rb(k) — Abbi‘b(k)
= L, [Aa@a(k) + Anan(k) + Byulk]]
+ L, al‘a(k) + L au(k) + LTA(,bi“b(k‘)

= (Abb - LrAab) jb(k)

These are the expected error dynamics for the unmeasured state.
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Reduced order estimators

Implementation

There is a problem; the “measurement”, v(k), has an z,(k + 1) term in it. So it doesn’t
appear to be causal.

This can be solved by defining a new state,
ze(k) == &p(k) — Ly zq(k).

This gives an update equation,

=

ze(k+1) =|ap(k+1)|— Lyag(k+1) «— this is where we will remove z,(k + 1)

- @;E;(k) + (i za(R) + By u(k) —
Lot )= Aw (B~ LeBou(h) ~(LoAw (k)] — Lok 1)

< (By — L,Ba) u(k).

Note that @ (k) is easily reconstructed from z.(k),

(k) = xe(k) + Ly zq(k). «— substitute to get a state-space system for z.(k + 1)
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Reduced order estimators

Implementation
xq(k)
Aba - LrAaa
Ly
ze(k) zo(k+1)
+ 271 —+)— Bb - L,.Ba
(k)
App — L Agp
Estimator
State feedback
u(k)
-K
Ty(k K= _-K]|°
) =~ [ 201
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Estimation options

Why estimate when we can measure?

What are the benefits of estimating states when those same states are available for

measurement?

Inverted pendulum example

Measured states: p (cart position), 6 (pendulum angle)

Options:

1. Estimate v (cart velocity) and w (pendulum angular velocity) with a differentiator:

p(k) —p(k —1) 0(k) — 0(k — 1)

i) = BEEEL s = =

State feedback uses: [p(k) (k) 6(k

)
2. Reduced order estimator for 0(k) and &
State feedback uses: [p(k) o(k) 6(k)

(k)]
(K)-

(k)]

3. Full order estimation for all states.

State feedback uses: {ﬁ(k) a(k) (k) J)(k)]
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FEstimation options

Tradeoffs

Option 1:

Option 2:

Option 3:

L+ o+ o+

+

Simple, easy to understand, and easy to debug.

The differentiation approximation is very sensitive to high frequency noise.
(We could add a low pass filter).

The variables p and 6 are not independent. They are related by
z(k + 1) = Az(k) + Bu(k) and this information is ignored.

Low order. Only estimate those states that are needed.
Optimal estimation of v and w in the presence of noise on p and 6.
Dynamic relationship between v and 6 taken into account in estimation.

Noise on the p and € variables is not filtered
(We could add a low pass noise filter).

Optimal estimation of all states in the presence of noise on p and 6.
Dynamic relationship between all states taken into account in estimation.
Potentially higher order.

Unless controller order is really critical in the application a full order estimator is preferred.
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Estimation application: space systems

Estimation application: Spitzer space telescope (SIRTF)

In most earth orbiting and interplanetary missions the estimation is by far the most difficult
part of the control problem.

Telescope features:
e Infrared sensing.

e Heliocentric earth trailing orbit
(0.12 AU /year drift from Earth)

e Precision pointing (arcsecond)
e Cooled to 5.5K

e Field of view: 32 arcminutes

Credits: David Bayard (JPL)
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Spitzer telescope

Pointing control hardware

Telescope

Components:

Solar panel shield b GyI‘O (2)

Outer shell e Star tracker (2)

Solar panel - . e Reaction wheels (4)

e Fine Sun Sensor (2)

Spacecraft shield e Coarse sun sensor (3)

o P sensor (2
Star trackers & CRS ¢ ( )

inertial reference units e Cold gas thrusters (12)

Spacecraft bus

High gain antenna Low gain antenna
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Spitzer telescope

Pointing control hardware

PCRS sensor: optical sensing in the telescope’s field-of-view

PCRS o
IRAC

Infrared MIPS

point source

IRS

MIPS

Visible
point source

TRAC
PCRS

32 arcmin (about size of full moon on sky)
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Spitzer telescope

Star trackers

STAR TRACKER
SIRTF s 001

Re-Zeto
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Spitzer telescope

Reference frames

All of the instruments have to be located with respect to the pointing control system.

2nd Ord
(F34)

IRS Slit
Long-Hi

TPF Y -Axis

2nd Ord
(F46)

RS Slit <
1stOrd

M

70 Fine Cntr (F118)
70 Coarse Cntr (F107)
SED Cntr (F121)

TPF Z-Axis

>

Blue (F22) Red (F18)
SS (F23) SS(%9)
IRS
A
(F52)
IRS Slit
Short-Hi
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Spitzer telescope estimators
Filter # Description Ops Update
states frequency
Fast 6 Attitude observer flight | 2 Hz tracker
Observer 3 attitude states 10 Hz gyro
3 gyro states
STA to PCRS | 6 Tracker to telescope alignment flight | 8 hours
3 short term drift
3 long term drift
GCF 18 Gyro calibration flight | Calibrate for 1.5hrs
3 scale factors every 4th day
6 misalignments
3 absolute scale factors Calibrate gyro bias
3 gyro bias on whenever on
3 attitude inertial hold
PRI 11 Pointing ready indicator flight | Every slew controlled
4 two-axis rigid body (x2) using attitude controller
7 controller states
IPF 37 Instrument pointing frame ground | Several times during
37 pointing alignments in-orbit checkout
PAC 7 Pointing alignment & calibration | ground | Multiple times

6 same as STA-to-PCRS
1 angle between PCRS units

during in-orbit
checkout
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Dark Globule in IC 1396 Spitzer Space Telescope * IRAC

Inset: visible light composite [CFHT & DSS)

NASA / JPL-Caltech / W. Reach [SSC/Caltech) s8sc2003-06a

Embedded Outflow in HH 46/47 Spitzer Space Telescope * IRAC

Inset: visible light [DSS)
NASA / JPL-Caltech / A. Noriega-Crespo (SSC/Caltech) ssc2003-06f




Composite 3.6-24 microns

24 microns 8.0 microns 3.6 microns

Spiral Galaxy M81 Spitzer Space Telescope * MIPS * IRAC

Inset: visible light (NOAQ)

NASA / JPL-Caltech / K. Gordon (University of Arizona), S. Wiliner (Harvard-Smithsonian CfA) ssc2003-06d

Estimation

Optimal estimation: Kalman filtering
Plant inputs: known actuation (1) and unknown disturbance (d) of known variance.
Plant measurements: output (y) plus noise (1) of known variance.
Kalman filter: estimates the state (x) with minimum variance.

The Kalman filter uses the optimal combination of measurement and propagated model
to update the estimate.

Applications:

Flight control systems.
GPS navigation, including turn-by-turn navigators.

Economics.

Interplanetary spacecraft guidance, navigation and control.
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