Reduced order estimation

In many cases we have a partial measurement of the state, and need only estimate the remaining states.

This allows us to use a reduced order estimator. If we can measure m of the nx states, then we need only estimate the nx - m remaining states. What is the resulting controller order?

This allows us to implement simpler controllers.

Roy Smith: ECE 147b 13: 1

Reduced order estimation

Example: Inverted pendulum.

The states are:

\overline{p}	cart position	measured
v	cart velocity	not measured
θ	pendulum angle	measured
ω	pendulum angular velocity	not measured

Use a reduced order estimator to estimate cart velocity, v, and pendulum angular velocity, ω .

The state feedback is then,

$$u(k) = K \begin{bmatrix} p(k) \\ \hat{v}(k) \\ \theta(k) \\ \hat{\omega}(k) \end{bmatrix} \quad \longleftarrow \quad \text{estimated}$$

How does this differ from simply estimating "rate of change" on each of the two measurements?

Details

To work out the details divide the states into two groups,

 $x_a(z)$ Measured states,

 $x_b(z)$ Unmeasured states (to be estimated).

with an associated state-space representation,

$$\begin{bmatrix} x_a(k+1) \\ x_b(k+1) \end{bmatrix} = \begin{bmatrix} A_{aa} & A_{ab} \\ A_{ba} & A_{bb} \end{bmatrix} \begin{bmatrix} x_a(k) \\ x_b(k) \end{bmatrix} + \begin{bmatrix} B_a \\ B_b \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} x_a(k) \\ x_b(k) \end{bmatrix}$$

Basic idea: Rearrange unmeasured state equation to make it look like a standard estimation problem.

Examine the unmeasured state update equation,

$$x_b(k+1) = A_{bb} x_b(k) + \underbrace{A_{ba} x_a(k) + B_b u(k)}_{\text{"known" input} =: w(k)}$$

Roy Smith: ECE 147b **13**: 3

Reduced order estimators

Details (continued)

We can rearrange the $x_a(k+1)$ equation to get something like a standard measurement equation.

$$\underbrace{x_a(k+1) - A_{aa} x(k) - B_a u(k)}_{\text{"known" measurement}} = A_{ab} x_b(k)$$

This gives a smaller state-space system involving only the unmeasured states,

$$x_b(k+1) = A_{bb} x_b(k) + w(k)$$
$$v(k) = A_{ab} x_b(k)$$

Note that this looks like a standard system with the substitutions,

$$A \longleftarrow A_{bb}, \qquad C \longleftarrow A_{ab}$$

Ackermann's equation lets us design L_r to place the poles of: $A_{bb} - L_r A_{ab}$.

Estimator equations

Implementing this estimator gives,

$$\hat{x}_b(k+1) = A_{bb}\hat{x}_b(k) + A_{ba}x_a(k) + B_bu(k) + L_r[x_a(k+1) - A_{aa}x_a(k) - B_au(k) - A_{ab}\hat{x}_b(k)].$$

Estimator error dynamics

$$\tilde{x}_b(k) = x_b(k) - \hat{x}_b(k),$$

so,

$$\begin{split} \tilde{x}_b(k+1) &= x_b(k+1) - \hat{x}_b(k+1), \\ &= A_{ba}x_a(k) + A_{bb}x_b(k) + B_{b}u(k) - A_{bb}\hat{x}_b(k) - A_{ba}x_a(k) - B_{b}u(k) \\ &- L_rx_a(k+1) + L_rA_{aa}x_a(k) + L_rB_au(k) + L_rA_{ab}\hat{x}_b(k), \\ &= A_{bb}x_b(k) - A_{bb}\hat{x}_b(k) \\ &- L_rx_a(k+1) + L_rA_{aa}x_a(k) + L_rB_au(k) + L_rA_{ab}\hat{x}_b(k). \end{split}$$

Roy Smith: ECE 147b 13: 5

Reduced order estimators

Estimator error dynamics

$$\tilde{x}_b(k+1) = A_{bb} x_b(k) - A_{bb} \hat{x}_b(k) - L_r x_a(k+1)
+ L_r A_{aa} x_a(k) + L_r B_a u(k) + L_r A_{ab} \hat{x}_b(k).$$

Recall that we know how to calculate $x_a(k+1)$,

$$x_a(k+1) = A_{aa} x_a(k) + A_{ab} x_b(k) + B_a u(k),$$

and substituting this gives,

$$\begin{split} \tilde{x}_b(k+1) &= A_{bb}x_b(k) - A_{bb}\hat{x}_b(k) \\ &- L_r [A_{aa}x_a(k) + A_{ab}x_b(k) + B_au(k)] \\ &+ L_r A_{aa}x_a(k) + L_r B_au(k) + L_r A_{ab}\hat{x}_b(k) \\ &= (A_{bb} - L_r A_{ab})\,\tilde{x}_b(k). \end{split}$$

These are the expected error dynamics for the unmeasured state.

Implementation

There is a problem; the "measurement", v(k), has an $x_a(k+1)$ term in it. So it doesn't appear to be causal.

This can be solved by defining a new state,

$$x_c(k) := \hat{x}_b(k) - L_r x_a(k).$$

This gives an update equation,

$$x_c(k+1) = \hat{x}_b(k+1) - L_r x_a(k+1) \qquad \longleftarrow \text{ this is where we will remove } x_a(k+1)$$

$$= \underbrace{A_{bb} \hat{x}_b(k) + A_{ba} x_a(k) + B_b u(k)}_{+L_r x_a(k+1) - (L_r A_{aa} x_a(k)) \leftarrow L_r B_a u(k) - L_r A_{ab} \hat{x}_b(k)}_{+L_r A_{ab}) \hat{x}_b(k) - L_r A_{ab} \hat{x}_b(k) - L_r A_{ab} \hat{x}_b(k)$$

$$= \underbrace{(A_{bb} - L_r A_{ab}) \hat{x}_b(k)}_{+(A_{ba} - L_r A_{aa}) x_a(k) + (B_b - L_r B_a) u(k)}.$$

Note that $\hat{x}_b(k)$ is easily reconstructed from $x_c(k)$,

$$\hat{x}_b(k) = x_c(k) + L_r x_a(k)$$
. \leftarrow substitute to get a state-space system for $x_c(k+1)$

Roy Smith: ECE 147b 13: 7

Reduced order estimators

${\bf Implementation}$

Roy Smith: ECE 147b 13: 8

Why estimate when we can measure?

What are the benefits of estimating states when those same states are available for measurement?

Inverted pendulum example

Measured states: p (cart position), θ (pendulum angle)

Options:

1. Estimate v (cart velocity) and ω (pendulum angular velocity) with a differentiator:

$$\label{eq:poisson} \hat{v}(k) \, = \, \frac{p(k) - p(k-1)}{T}, \qquad \hat{\omega}(k) \, = \, \frac{\theta(k) - \theta(k-1)}{T},$$

State feedback uses: $\begin{bmatrix} p(k) & \hat{v}(k) & \theta(k) & \hat{\omega}(k) \end{bmatrix}$

- 2. Reduced order estimator for $\hat{v}(k)$ and $\hat{\omega}(k)$. State feedback uses: $[p(k) \ \hat{v}(k) \ \theta(k) \ \hat{\omega}(k)]$
- 3. Full order estimation for all states. State feedback uses: $\hat{p}(k) \ \hat{v}(k) \ \hat{\theta}(k) \ \hat{\omega}(k)$

Roy Smith: ECE 147b 13: 9

Estimation options

Tradeoffs

- Option 1: + Simple, easy to understand, and easy to debug.
 - The differentiation approximation is very sensitive to high frequency noise.
 (We could add a low pass filter).
 - The variables p and θ are not independent. They are related by x(k+1) = Ax(k) + Bu(k) and this information is ignored.
- Option 2: + Low order. Only estimate those states that are needed.
 - + Optimal estimation of v and ω in the presence of noise on p and θ .
 - + Dynamic relationship between v and θ taken into account in estimation.
 - Noise on the p and θ variables is not filtered (We could add a low pass noise filter).
- Option 3: + Optimal estimation of all states in the presence of noise on p and θ .
 - + Dynamic relationship between all states taken into account in estimation.
 - Potentially higher order.

Unless controller order is really critical in the application a full order estimator is preferred.

Estimation application: Spitzer space telescope (SIRTF)

In most earth orbiting and interplanetary missions the estimation is by far the most difficult part of the control problem.

Telescope features:

- \bullet Infrared sensing.
- \bullet Heliocentric earth trailing orbit (0.12 AU/year drift from Earth)
- Precision pointing (arcsecond)
- \bullet Cooled to 5.5K
- Field of view: 32 arcminutes

Credits: David Bayard (JPL)

Roy Smith: ECE 147b 13: 11

Spitzer telescope

Pointing control hardware

Components:

- Gyro (2)
- Star tracker (2)
- Reaction wheels (4)
- Fine Sun Sensor (2)
- Coarse sun sensor (3)
- PCRS sensor (2)
- \bullet Cold gas thrusters (12)

Pointing control hardware

PCRS sensor: optical sensing in the telescope's field-of-view

32 arcmin (about size of full moon on sky)

Roy Smith: ECE 147b 13: 13

Spitzer telescope

Star trackers

Reference frames

All of the instruments have to be located with respect to the pointing control system.

Roy Smith: ECE 147b 13: 15

Spitzer telescope estimators

Filter	#	Description	Ops	Update
	states			frequency
Fast	6	Attitude observer	flight	2 Hz tracker
Observer		3 attitude states		10 Hz gyro
		3 gyro states		
STA to PCRS	6	Tracker to telescope alignment	flight	8 hours
		3 short term drift		
		3 long term drift		
GCF	18	Gyro calibration	flight	Calibrate for 1.5hrs
		3 scale factors		every 4th day
		6 misalignments		
		3 absolute scale factors		Calibrate gyro bias
		3 gyro bias		on whenever on
		3 attitude		inertial hold
PRI	11	Pointing ready indicator	flight	Every slew controlled
		4 two-axis rigid body (\times 2)		using attitude controller
		7 controller states		
IPF	37	Instrument pointing frame	ground	Several times during
		37 pointing alignments		in-orbit checkout
PAC	7	Pointing alignment & calibration	ground	Multiple times
		6 same as STA-to-PCRS		during in-orbit
		1 angle between PCRS units		checkout

Roy Smith: ECE 147b **13**: 16

Estimation

Optimal estimation: Kalman filtering

Plant inputs: known actuation (*u*) and unknown disturbance (*d*) of known variance.

Plant measurements: output (*y*) plus noise (*n*) of known variance.

Kalman filter: estimates the state (x) with minimum variance.

The Kalman filter uses the optimal combination of measurement and propagated model to update the estimate.

Applications:

Flight control systems.

GPS navigation, including turn-by-turn navigators.

Economics.

Interplanetary spacecraft guidance, navigation and control.