Closed-loop pole locations

Closed-loop pole locations

Continuous-time intuition: rise-time, damping ratio, settling time.
Linear Quadratic Regulators (LQR)
Optimal estimation (Kalman filtering)
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z(s) = T=s/a (pole = «, time constant = 1/a = 1)
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Settling time (to within 1%): ts = — = 4.67
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Discrete equivalent: z4 = e*T
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Dominant complex poles: 3, 5"
Natural frequency: w, = abs(8)
Damping ratio: ¢ = sin(6)
. . 1.8
Rise time (10% to 90%): t, ~ —
w'ﬂ
Overshoot: M = e ™¢/V1-¢
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Pole placement

State feedback: u(k) = —K x(k)
Closed-loop dynamics: z(k+1) = (A — BK)x(k)

Closed-loop poles given by: eig(A — BK)
Ackermann’s formula: K =1[0---01]C ".(A)

% Example by hand ...
% desired closed-loop poles are pl and p2

12 = eye(2,2);
Ctrl = ctrb(A,B); % controllability matrix

gamma_c = (A - pl*I2) * (A - p2*I2); % polynomial in A
K= [0, 1] * inv(Ctrl) * gamma_c;

% Example with place

K = place(A,B, [pl; p21);
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Linear Quadratic Regulator (LQR)
State feedback: u(k) = —K x(k)
Closed-loop dynamics: Zap(k+1) = (A — BK)zap(k)

Closed-loop poles given by: eig(A — BK)
Define a cost function: JLQr = Z Tap(B)T Qrap(k) + u(k)” Ru(k)
k=1

Weighting matrices: Q (state) and R (input)

Find the K that minimizes Jrqr

Note that this guarantees that A — BK is stable. Why?
K = dlqr(A,B,Q,R);
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Linear Quadratic Regulator (LQR)

Jror = > zap(k)" Quap(k) + u(k)” Ru(k)
k=1

Weighting matrices: Q (state) and R (input)

Q is symmetric and positive definite: Q = QT and zTQz >0 for all z

R is symmetric and positive definite: R =RT and uwfRu>0 forallu

Q c Rdim(w) X dim(x) and R € Rdim(u) X dim(w)

I . 1

Initial choice (Bryson’s rule): Q is diagonal with Q;; = m
- . 1

R is diagonal with R;; = m
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Linear Quadratic Estimation (Kalman filtering)
How to choose pole locations for the estimation errors: A — LC

Plant model:

z(k+1) = Axz(k) + Bu(k) + Guw(k)
yk) = Calk) + (k)
Process noise:  w(k) (zero-mean white noise)
Measurement noise: v(k) (zero-mean white noise)

Estimator: #(k+1) = Az(k) + Bu(k) + L(y(k) — Cz(k))

Estimator error: z(k) = z(k) — 2(k)
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Linear Quadratic Estimation (Kalman filtering)

Plant model:  z(k+1) = Axz(k) + Bu(k) + Gw(k)

y(k) = Cuz(k) + v(k)
What is the optimal choice of L to balance between the two noise sources: w(k) and v(k)?
Estimation error: Z(k+1) = (A — LO)z(k) + Gw(k) — Lv(k)
Objective: min  E{z(k)Tz(k)} (minimize estimation error variance)
To do this we must know (or at least approximate):

S{w(k)w(k;)T} = Qn (QN c Rdim(w)xdim(w)>

£ {v(k)v(k)T} = Ry (RN c Rdim<y>xdim<y>>

L = kalman(Pz,QN,RN)
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