Closed-loop pole locations

Continuous-time intuition: rise-time, damping ratio, settling time.

Linear Quadratic Regulators (LQR)

Optimal estimation (Kalman filtering)

Roy Smith, ECE 147b, 16:1

Closed-loop pole locations

Closed-loop pole locations

$$x(s) = \frac{1}{1 - s/\alpha}$$
 (pole = α , time constant = $1/\alpha = \tau$)

Settling time (to within 1%):
$$t_s = \frac{4.6}{\alpha} = 4.6 \tau$$

Discrete equivalent: $z_{\alpha} = e^{\alpha T}$

Closed-loop pole locations

Dominant complex poles: \hat{s}, \hat{s}^*

Natural frequency: $\omega_n = abs(\hat{s})$

Damping ratio: $\zeta = \sin(\theta)$

Rise time (10% to 90%): $t_r \approx \frac{1.8}{\omega_n}$

Overshoot: $M = e^{-\pi\zeta/\sqrt{1-\zeta^2}}$

Roy Smith, ECE 147b, 16:3

Closed-loop pole locations

Closed-loop pole locations

Pole placement

```
u(k) = -K x(k)
State feedback:
Closed-loop dynamics:
                     x(k+1) = (A - BK)x(k)
Closed-loop poles given by:
                            eig(A - BK)
                     K = [0 \cdots 0 1] \mathcal{C}^{-1} \gamma_c(A)
Ackermann's formula:
% Example by hand ...
% desired closed-loop poles are p1 and p2
I2 = eye(2,2);
Ctrl = ctrb(A,B);
                                            % controllability matrix
gamma_c = (A - p1*I2) * (A - p2*I2);
                                            % polynomial in A
K = [0, 1] * inv(Ctrl) * gamma_c;
% Example with place
K = place(A,B, [p1; p2]);
```

__ Roy Smith, ECE 147b, 16:5

Closed-loop pole locations

Linear Quadratic Regulator (LQR)

State feedback: u(k) = -K x(k)

Closed-loop dynamics: $x_{clp}(k+1) = (A - BK) x_{clp}(k)$

Closed-loop poles given by: eig(A - BK)

Define a cost function: $J_{\text{LQR}} = \sum_{k=1}^{\infty} x_{\text{clp}}(k)^T Q x_{\text{clp}}(k) + u(k)^T R u(k)$

Weighting matrices: Q (state) and R (input)

Find the K that minimizes J_{LQR}

Note that this guarantees that A - BK is stable. Why?

K = dlqr(A,B,Q,R);

Linear Quadratic Regulator (LQR)

$$J_{\text{LQR}} = \sum_{k=1}^{\infty} x_{\text{clp}}(k)^T Q x_{\text{clp}}(k) + u(k)^T R u(k)$$

Weighting matrices: Q (state) and R (input)

Q is symmetric and positive definite: $Q = Q^T$ and $x^TQx > 0$ for all x

R is symmetric and positive definite: $R = R^T$ and $u^T R u > 0$ for all u

 $Q \in \mathcal{R}^{\dim(x) \times \dim(x)}$ and $R \in \mathcal{R}^{\dim(u) \times \dim(u)}$

Initial choice (Bryson's rule): Q is diagonal with $Q_{ii} = \frac{1}{\max\{x_i(k)^2\}}$

$$R$$
 is diagonal with $R_{ii} = \frac{1}{\max\{u_i(k)^2\}}$

_ Roy Smith, ECE 147b, 16:7

Closed-loop pole locations

Linear Quadratic Estimation (Kalman filtering)

How to choose pole locations for the estimation errors: A - LC

Plant model:

$$x(k+1) = Ax(k) + Bu(k) + Gw(k)$$

 $y(k) = Cx(k) + v(k)$

Process noise: w(k) (zero-mean white noise)

Measurement noise: v(k) (zero-mean white noise)

Estimator: $\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + L(y(k) - C\hat{x}(k))$

Estimator error: $\tilde{x}(k) = x(k) - \hat{x}(k)$

$$\tilde{x}(k+1) = (A - LC)\tilde{x}(k) + Gw(k) - Lv(k)$$

Linear Quadratic Estimation (Kalman filtering)

Plant model:
$$x(k+1) = Ax(k) + Bu(k) + Gw(k)$$

$$y(k) = Cx(k) + v(k)$$

What is the optimal choice of L to balance between the two noise sources: w(k) and v(k)?

Estimation error: $\tilde{x}(k+1) = (A - LC)\tilde{x}(k) + Gw(k) - Lv(k)$

Objective: min $\mathcal{E}\{\tilde{x}(k)^T\tilde{x}(k)\}$ (minimize estimation error variance)

To do this we must know (or at least approximate):

$$\mathcal{E}\left\{w(k)\,w(k)^T\right\} \,=\, Q_N \qquad \left(Q_N \,\in\, \mathcal{R}^{\dim(w)\,\times\,\dim(w)}\right)$$

$$\mathcal{E}\left\{v(k)\,v(k)^T\right\} = R_N \qquad \left(R_N \in \mathcal{R}^{\dim(y) \times \dim(y)}\right)$$

L = kalman(Pz,QN,RN)

_ Roy Smith, ECE 147b, 16:9