Approximating $C(s)$ with $C(z)$

- Design a continuous-time controller, $C(s)$, for $P(s)$.
- Approximate $C(s)$ with a discrete-time controller, $C(z)$.
(Franklin \& Powell refer to this procedure as "emulation.")

Approach:

A transfer function, $C(s)$, can be realised with integrators, gains, and summation blocks.

$$
C(s)=\frac{y(s)}{u(s)}=\frac{1}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} .
$$

is equivalent to:

Now replace the integrators ($1 / s$ blocks) with a discrete-time approximation to integration.

Integration:

$$
\begin{gathered}
y(s) \\
y(t)=y(0)+\int_{0}^{t} x(\tau) d \tau,
\end{gathered}
$$

The output, $y(t)$, over a single sample period of T seconds, is given by

$$
y(k T+T)=y(k T)+\int_{k T}^{k T+T} x(\tau) d \tau
$$

Objective:

Find a discrete-time approximation, $F(z)$, to the input-output relationship of the integrator.

Find $F(z) \approx 1 / s$, then, $s \approx F^{-1}(z)$,
and $C(z)=\left.C(s)\right|_{s=F^{-1}(z)}$.

\qquad

Forward difference approximation:

$$
y_{f}(k T+T)=y_{f}(k T)+T x(k T)
$$

By taking z-transforms,

$$
z y_{f}(z)=y_{f}(z)+T x(z)
$$

or,

$$
\frac{y_{f}(z)}{x(z)}=\frac{T}{z-1} .
$$

So, the approximation is: $\quad \frac{1}{s} \approx \frac{T}{z-1}$.
This is equivalent to the substitution: $s=\frac{z-1}{T}$.
This approximation is also known as an Euler approximation.

Backward difference approximation:

$$
y_{b}(k T+T)=y_{b}(k T)+T x(k T+T) .
$$

In the z-domain this gives,

$$
z y_{b}(z)=y_{b}(z)+z T x(z)
$$

or, equivalently,

$$
\frac{y_{b}(z)}{x(z)}=\frac{T z}{z-1} .
$$

So the approximation is:

$$
\frac{1}{s} \approx \frac{T z}{z-1},
$$

which is equivalent to the substitution: $\quad s=\frac{z-1}{T z}$.

Trapezoidal approximation:

$$
y_{b l}(k T+T)=y_{b l}(k T)+T x(k T)+(x(k T+T)-x(k T)) T / 2 .
$$

Taking z-transforms,

$$
z y_{b l}(z)=y_{b l}(z)+T x(z)+\frac{T}{2}(z-1) x(z),
$$

which gives,

$$
\frac{y_{b l}(z)}{x(z)}=\frac{T}{2} \frac{z+1}{z-1}
$$

So the approximation is: $\quad \frac{1}{s} \approx \frac{T}{2} \frac{z+1}{z-1}$.

The substitution is therefore, $\quad s=\frac{2}{T} \frac{z-1}{z+1}$.
This approximation is also known as:

- Bilinear approximation (based on the mathematical form).
- Tustin approximation (from the British engineer who first used it for this purpose).

Properties:

Controller order:

The forward, backward and trapezoidal approximations all preserve the order of the controller.

If $C(s)$ is an nth order transfer function, the $C(z)$ is also nth order with any of these approximations.

It is possible to derive higher order approximations to integration (quadratic or higher order polynomial fits). These will make the order of $C(z)$ greater than $C(s)$.

Stability:

Two issues:

- Controller stability: If $C(s)$ is stable, is $C(z)$ stable?
- Closed-loop stability: If $\frac{1}{1+P(s) C(s)}$ is stable, is $\frac{1}{1+P(z) C(z)}$ stable?

To investigate controller stability we have to look more closely at how the approximations map the s-plane to the z-plane.

Controller stability:

Forward difference/Euler approximation:

$$
s=\frac{z-1}{T} .
$$

This maps the left half s-plane onto the region shown.

This maps to more than just the unit disk.
Controllers, $C(s)$, with high frequency or lightly damped poles will give unstable $C(z)$.

Controller stability:

Backward difference approximation:

$$
s=\frac{z-1}{T z},
$$

This maps the left half s-plane onto the region shown.

This maps to the inside of the unit disk. So stable $C(s)$ imples stable $C(z)$. $C(z)$ cannot have lightly damped poles, even if $C(s)$ had lightly damped poles.
\qquad

Controller stability:

Trapezoidal/Bilinear/Tustin approximation:

$$
s=\frac{2}{T} \frac{z-1}{z+1},
$$

This maps the left half s-plane onto the region shown.

This maps to the entire right-half plane exactly onto the unit disk.
So $C(s)$ is stable $\Longleftrightarrow C(z)$ is stable
This is why this approximation is the most commonly used.

A Comparison

Consider the controller: $\quad C(s)=\frac{(s+1)}{(0.1 s+1)(0.01 s+1)}$.
A lead-lag controller producing the maximum phase lead around $30 \mathrm{rad} / \mathrm{sec} .(\approx 4.8 \mathrm{~Hz})$.
Using a sample period of $T=0.05$ second gives a Nyquist frequency of 10 Hz .
\qquad

Properties of the approximations
A Comparison: All approximations have significant errors close to the Nyquist frequency.

Frequency distortion: Bilinear approximation

Bilinear approximation maps all continuous frequencies (ω) from 0 to $j \infty$ to discrete frequencies ($\mathrm{e}^{j \Omega T}$) with Ω from 0 to π / T. In particular, $s=j \infty$ maps to $z=\mathrm{e}^{j \pi}=-1$.

Sampling would map frequencies via $\omega=\Omega$, so $z=-1$ would correspond to a continuous frequency $\omega=j \pi / T$.

Substituting $s=j \omega$ and $z=\mathrm{e}^{j \Omega T}$ into $s=\frac{2}{T} \frac{z-1}{z+1}$, gives,

$$
\begin{aligned}
j \omega & =\frac{2}{T} \frac{\left(1-\mathrm{e}^{-j \Omega T}\right)}{1+\mathrm{e}^{-j \Omega T}} \\
& =\frac{2}{T} \frac{j \sin (\Omega T / 2)}{\cos (\Omega T / 2)} \\
& =\frac{2}{T} j \tan (\Omega T / 2),
\end{aligned}
$$

which implies that the distortion is given by $\quad \Omega=\frac{2}{T} \tan ^{-1}(\omega T / 2)$.

The line $\Omega=\omega T$ is the equivalent sampled frequency mapping.

Reducing the distortion: prewarping

The transformation $s=\frac{\alpha(z-1)}{(z+1)}, \quad$ maps $\operatorname{Re}\{s\}<0$ to $|z|<1$.
α is a degree of freedom that can be exploited to modify the frequency distortion.

Prewarping:

Select α to make $C\left(j \omega_{0}\right)=C_{z}\left(\mathrm{e}^{j \omega_{0} T}\right)$.
This makes $C(s)=C_{z}(z)$ at DC and at $s=j \omega_{0}$ (ω_{0} is the prewarping frequency).
To solve for α,

$$
j \omega_{0}=\frac{\alpha\left(\mathrm{e}^{j \omega_{0} T}-1\right)}{\left(\mathrm{e}^{j \omega_{0} T}+1\right)}=j \alpha \tan \left(\omega_{0} T / 2\right)
$$

which implies that

$$
\alpha=\frac{\omega_{0}}{\tan \left(\omega_{0} T / 2\right)} .
$$

Example revisited Choose a prewarping frequency: $\omega_{0}=50 \mathrm{rad} / \mathrm{sec}$.
Prewarped bilinear/Tustin: $C_{z}(z)=\left.C(s)\right|_{s=\alpha \frac{z-1}{z+1}} \quad$ which gives $C(j 50)=C_{z}\left(\mathrm{e}^{j 50 T}\right)$.

Example revisited

Frequency distortion (Bilinear): $\Omega=\frac{2}{T} \tan ^{-1}(\omega T / 2)$.
Frequency distortion (Bilinear with prewarping): $\Omega=\frac{2}{T} \tan ^{-1}(\omega / \alpha)$

Choosing a prewarping frequency

The prewarping frequency must be in the range: $0<\omega_{0}<\pi / T$.

- $\alpha=2 / T$ (standard bilinear) corresponds to $\omega_{0}=0$.
- $\omega_{0}=\pi / T$ is impossible.

Possible choices for ω_{0} :

- The cross-over frequency (which will help preserve the phase margin).
- The frequency of a critical notch.
- The frequency of a critical oscillatory mode.

The best choice depends on the most important features in your control design.
Remember: $C(s)$ stable implies $C(z)$ stable, but you must check that $\frac{1}{1+P(z) C(z)}$ is stable!

