
Design by approximation

Approach:

A transfer function, C(s), can be realised with integrators, gains, and summation blocks.

C(s) =
y(s)

u(s)
=

1

s3 + a2s2 + a1s + a0
.
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Now replace the integrators (1/s blocks) with a discrete-time approximation to integration.
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Design by approximation

Approximating C(s) with C(z)

P(s) C(s)

C(z)P(z)

Approximation

of C(s) with C(z)

Model  P(s), and

sample/hold as

P(z)

Continuous-time

design

Discrete-time

design

• Design a continuous-time controller, C(s), for P (s).

• Approximate C(s) with a discrete-time controller, C(z).

(Franklin & Powell refer to this procedure as “emulation.”)
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Forward difference approximation

Forward difference approximation:

yf(kT + T ) = yf(kT ) + Tx(kT ).

By taking z-transforms,

zyf(z) = yf(z) + Tx(z),

or,

yf(z)

x(z)
=

T

z − 1
.

kT kT+T

t

x(t)

x(kT+T)

x(kT)

y
f (kT+T)

y
f (kT)-

So, the approximation is:
1

s
≈

T

z − 1
.

This is equivalent to the substitution: s =
z − 1

T
.

This approximation is also known as an Euler approximation.

Roy Smith: ECE 147b 4: 4

Approximations to integration

Integration:

1/s ��
y(s) x(s)

y(t) = y(0) +

∫ t

0

x(τ) dτ,

The output, y(t), over a single sample period of
T seconds, is given by

y(kT + T ) = y(kT ) +

∫ kT+T

kT

x(τ) dτ.
kT kT+T

t

x(t)

x(kT+T)

x(kT)

y(kT+T)

-  y(kT)

Objective:

Find a discrete-time approximation, F (z), to the input-output relationship of the integrator.

Find F (z) ≈ 1/s, then, s ≈ F−1(z),

and C(z) = C(s) |s=F−1(z) .

F (z)��
y(z) x(z)
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Trapezoidal approximation

Trapezoidal approximation:

ybl(kT + T ) = ybl(kT ) + Tx(kT ) + (x(kT + T ) − x(kT ))T/2.

Taking z-transforms,

zybl(z) = ybl(z) + Tx(z) +
T

2
(z − 1)x(z),

which gives,

ybl(z)

x(z)
=

T

2

z + 1

z − 1
.

So the approximation is:
1

s
≈

T

2

z + 1

z − 1
.

kT kT+T

t

x(t)

x(kT+T)

x(kT)

y
bl (kT+T)

y
bl (kT)-

The substitution is therefore, s =
2

T

z − 1

z + 1
.

This approximation is also known as:

• Bilinear approximation (based on the mathematical form).

• Tustin approximation (from the British engineer who first used it for this purpose).
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Backward difference approximation

Backward difference approximation:

yb(kT + T ) = yb(kT ) + Tx(kT + T ).

In the z-domain this gives,

zyb(z) = yb(z) + zTx(z),

or, equivalently,

yb(z)

x(z)
=

Tz

z − 1
.

kT kT+T

t

x(t)

x(kT+T)

x(kT)

y
b(kT+T)

y
b(kT)-

So the approximation is:

1

s
≈

Tz

z − 1
,

which is equivalent to the substitution: s =
z − 1

Tz
.
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Properties of the approximations

Controller stability:

Forward difference/Euler approximation:

s =
z − 1

T
.

This maps the left half s-plane onto the region shown.

ImaginaryImaginary

Real Real

1-1

Mapping via

forward

difference

approximation

s-plane z-plane

This maps to more than just the unit disk.

Controllers, C(s), with high frequency or lightly damped poles will give unstable C(z).
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Properties of the approximations

Properties:

Controller order:

The forward, backward and trapezoidal approximations all preserve the order of the
controller.

If C(s) is an nth order transfer function, the C(z) is also nth order with any of these
approximations.

It is possible to derive higher order approximations to integration (quadratic or higher order
polynomial fits). These will make the order of C(z) greater than C(s).

Stability:

Two issues:

• Controller stability: If C(s) is stable, is C(z) stable?

• Closed-loop stability: If
1

1 + P (s)C(s)
is stable, is

1

1 + P (z)C(z)
stable?

To investigate controller stability we have to look more closely at how the approximations
map the s-plane to the z-plane.
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Properties of the approximations

Controller stability:

Trapezoidal/Bilinear/Tustin approximation:

s =
2

T

z − 1

z + 1
,

This maps the left half s-plane onto the region shown.

ImaginaryImaginary

Real Real

1-1

Mapping via

Tustin/bilinear

approximation

s-plane z-plane

This maps to the entire right-half plane exactly onto the unit disk.

So C(s) is stable ⇐⇒ C(z) is stable.

This is why this approximation is the most commonly used.
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Properties of the approximations

Controller stability:

Backward difference approximation:

s =
z − 1

Tz
,

This maps the left half s-plane onto the region shown.

ImaginaryImaginary

Real Real

1-1

Mapping via

backward

difference

approximation

s-plane z-plane

This maps to the inside of the unit disk. So stable C(s) imples stable C(z).

C(z) cannot have lightly damped poles, even if C(s) had lightly damped poles.
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Properties of the approximations

A Comparison: All approximations have significant errors close to the Nyquist frequency.
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Properties of the approximations

A Comparison

Consider the controller: C(s) =
(s + 1)

(0.1s + 1)(0.01s + 1)
.

A lead-lag controller producing the maximum phase lead around 30 rad/sec. (≈ 4.8 Hz).

Using a sample period of T = 0.05 second gives a Nyquist frequency of 10 Hz.
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Properties of the approximations

Frequency distortion (Bilinear approximation) Ω =
2

T
tan−1(ωT/2).

0

Continuous frequency (ω): [rad/sec]

Discrete frequency (Ω): [rad/sec]

Ω = ωT
−π

π

−π/T π/T−2π/T 2π/T−3π/T 3π/T

Tustin/bilinear transform

The line Ω = ωT is the equivalent sampled frequency mapping.
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Properties of the approximations

Frequency distortion: Bilinear approximation

Bilinear approximation maps all continuous frequencies (ω) from 0 to j∞ to discrete
frequencies (ejΩT ) with Ω from 0 to π/T . In particular, s = j∞ maps to z = ejπ = −1.

Sampling would map frequencies via ω = Ω, so z = −1 would correspond to a continuous
frequency ω = jπ/T .

Substituting s = jω and z = ejΩT into s =
2

T

z − 1

z + 1
, gives,

jω =
2

T

(1 − e−jΩT )

1 + e−jΩT

=
2

T

j sin(ΩT/2)

cos(ΩT/2)

=
2

T
j tan(ΩT/2),

which implies that the distortion is given by Ω =
2

T
tan−1(ωT/2).
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Prewarping

Example revisited Choose a prewarping frequency: ω0 = 50 rad/sec.

Prewarped bilinear/Tustin: Cz(z) = C(s) |s=α z−1

z+1

which gives C(j50) = Cz(e
j50T ).
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Prewarping

Reducing the distortion: prewarping

The transformation s =
α(z − 1)

(z + 1)
, maps Re {s} < 0 to |z| < 1.

α is a degree of freedom that can be exploited to modify the frequency distortion.

Prewarping:

Select α to make C(jω0) = Cz

(

ejω0T
)

.

This makes C(s) = Cz(z) at DC and at s = jω0 (ω0 is the prewarping frequency).

To solve for α,

jω0 =
α(ejω0T − 1)

(ejω0T + 1)
= jα tan(ω0T/2),

which implies that

α =
ω0

tan(ω0T/2)
.
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Prewarping

Choosing a prewarping frequency

The prewarping frequency must be in the range: 0 < ω0 < π/T .

• α = 2/T (standard bilinear) corresponds to ω0 = 0.

• ω0 = π/T is impossible.

Possible choices for ω0:

• The cross-over frequency (which will help preserve the phase margin).

• The frequency of a critical notch.

• The frequency of a critical oscillatory mode.

The best choice depends on the most important features in your control design.

Remember: C(s) stable implies C(z) stable, but you must check that
1

1 + P (z)C(z)
is

stable!
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Prewarping

Example revisited

Frequency distortion (Bilinear): Ω =
2

T
tan−1(ωT/2).

Frequency distortion (Bilinear with prewarping): Ω =
2

T
tan−1(ω/α)
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