State-space systems

Approach:

e Represent the plant, P(z) (or P(s)) as an nth order differential equation.

e Represent nth order differential equation as a 1st order matrix differential equation with
dimension n.

e Design methods now involve linear algebra.
e Easy to handle large systems (with MATLAB).
e FEasy to handle systems with multiple inputs and outputs.

e Easy to simulate systems.

=
ol
_|_
—
=
[

Az(k)+ Bu(k),
y(k) = Cuz(k)+ Du(k).

A, B, C and D can be matrices. z(k) is a vector (state vector).
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State-space systems

Representations: From transfer function to state-space.

Consider a linear, shift invariant, system:

y(k) u(k)
o P(z) o

We can express this as a transfer function,

WD = PR = gl
where a(z) and b(z) are polynomials, so,
m m—1 .
P) = b(z) _ bpz™ + b1z 1 4+ 4+ bm.
CLZ) Z7I+CL12717 +---+a,

For causal systems the order of b(z) is less than or equal to the order of a(z). So m < n above.

Assume for now that m < n,
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State-space systems

Outline:

1. Draw the system as an interconnected “chain of delays”,
2. Relabel the signals in the system,
3. Rewrite the input/output equations in terms of the new signals,

4. Abbreviate the equations to a matrix form (state-space).

Drawing a digital system block diagram in terms of delays is exactly the same as drawing a
continuous system block diagram in terms of integrators.

Split the system,

O b(Z) @ O
() = ﬁu(z) and  y(x) = b))
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State-space systems

Chain of delays:
Consider the first equation:  ((z) = ——u(z)

We want to develop a chain of delay model to get ¢(k):

First step: Write the expression for n delays:

C(k) = z7'¢(k+1)
Clhtn—1) = ='C(k+n)

In pictures ...

C(k) C(k+1) C(k+n—2) C(k+n—1) ((k+n)

Second step:  Express ((k +n) in terms of ((k), ..., ((k+n —1) and u(k).
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State-space systems

Second step:  Express ((k +n) in terms of ((k), ..., ((k+n —1) and u(k).
To do this, write this as: ((2)a(z) = u(z),
Expanding a(z) gives,
(z"+ a2 "t ay) ((2) = u(z)
and expressing this in terms of the highest power of z gives:

2"((z) = u(z) — (ar2" "+ -+ an) C(2).

Now write this is the time domain,

C(k+n)=ulk)— (al(k+n—1)+ -+ a,((k)).

This is the form we need to include in our block diagram.
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State-space systems

Block diagram of: ((z) = ——u(z)

C(k+n)=ulk) = (al(k+n—1)+ -+ a,(k)).

¢(k) ((k+1) ((k+n—-1)  ((k+n) u(k)
o S o

ay
| |
| |
| |

Gp—1
an,
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State-space systems

Numerator term: y(z) =

b(2) ¢(2)

Expanding the b(z) polynomial gives,

y(z) = b(2)((2),
(b()Zm + b12m71 44 bm) C(Z)

and in the time domain this is,

y(k) = boC(k+m) +biC(k+m —1) 4+ bu((k).

As m < n all of the signals (k) to ((k 4+ m) are available along to the top of the chain of

delays.

So y(k) is just a linear combination of signals from the previous block diagram.
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“Chain of delays” block diagram

bo
L ot m)
| |
‘ | Clk+1)
+ bm—l
y(k) k) Chtn=D) othtn) g
+ b7fl Z71 - - & - — - Z71
ay
| |
1 1
Qp—1
an

This could actually be constructed from shift registers, summers and multipliers.
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State-space representations

What if m=n 7?7

Remove the highest order terms by polynomial division,

) .
5 _ o, .
a(z) a(z)
Now d is a constant and b(z) has order m — 1 < n.
We deal with ﬁ exactly as before and then add the constant, d, to the result.
a(z

In pictures ...

(k) ) u(k)
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State-space representations

Developing the matrix equations

Relabel our intermediate variables,

z1(k) = C((k4+n—-1)
walk) = C(k+n—2)

x,,(k) = {(k)

Now work out what happens to each of them at time & + 1:

wi(k+1) = ((k+n) = u(k) = (@l(k+n—1)+ -+ a. (k)
= u(k) - (alxl(n) +-o 4+ anxn(k))

za(k+1) = ((h+n—-241) = (k)

nb+1) = C(h+1) G

Now look at this as a matrix multiplication.
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State-space representations

Matrix equations

r1(k+1) = —ayx(k) —asaxa(k) - —ap_12p-1(k) —apzp(k) + wu(k)
xg(k -+ 1) = xl(k)
IJ(k + 1) = IQ(k})
x(k+1) = xn-1(k)
or ...
$1(k + 1) —ay —az -+ —Aap—1 —0an xl(k) 1
xo(k+ 1 1 0 - 0 0 k 0
IZ( . ) = . .. t. . xQZ( ) + . U(k)
1 (k)
Define the state: z(k) = : to get the final equations.
z,(k)
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State-space representations
Matrix equations
z(k+1) = Ax(k) + Bu(k),
where
—a; —as —Qp_1 —ap 1
1 0 0 0 0
A = . and B =
0 1 0 0

This is the “state-update” equation (or sometimes just the “state”equation).

What about the output y(k)?

y(k) = bC(k+m) +0hC(k+m—1) -+ +b,((k)
bOznfm(k) +b1{L’n,m,1(k}) ot +bm-rn(k)
= C (k)
where C = [0 oo 0 by .. bm} . If m =n — 1 then there are no leading zeros in C.
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State-space systems

Equal numerator and denominator order case:

e T O
a(z)
d
. b(z)
We can calcuate the state-space representation for (—):
a(z

x(k+1) = Ax(k) + Bu(k)
g(k) = Cux(k),

and as, y(k) = g(k) + du(k), we have,

z(k+1) = Axz(k) + Bu(k)
y(k) = Cux(k) + du(k).
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State-space systems

Other domains:

Discrete time, v(k+1) = Ax(k) + Bu(k),
time invariant: y(k) = Caz(k) + Du(k)
dx(t

Continuous time, df‘ ) = Az(t) + Bult),

time invariant: y(t) = Cxz(t) + Du(t)

Nonlinear, = flz(t),u(t)),
time invariant:

Nonlinear, = f(t z(t),u(t)),
time varying:
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State-space systems

Examples: A thermal control system:

To(1)
L) T;(t) temperature of volume 4
© e(t) energy into the volume 1
Heater ' m;  mass of volume i
terminals () ¢ specific heat for volume 4
ki thermal conductance for 7, j interface
© e

We can derive the state-space representation directly from the thermal energy equations.

[Ty (t
For volume 1: m101d dlt(f) = ka(Ta(t) — Ta(t))
T
For volume 2: mQCQd ;f(t) = —kp(T®t) —Ti1t) —ko(Ta(t) — To(t)) +e(t)
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State-space examples:

Thermal system:
Suppose that 71(t) is the output of interest and e(t) and Ty(t) are both inputs.

Now select state variables which will allow us to put this into the generic state-space matrix
equation form.

-]

Then, rearranging gives,

dTy(t) —ki2 k1o
= T, (t t
dt micy i)+ micy 2(t)
dTh(t) k12 —k12 — kog ko 1
= Ti(t —=—T5(t To(t t
dt moCo 1( ) + moCo 2( ) + mocCo 0( ™moCo 6( )
So,
dTi(t) —k12 k1o
mic myc
= dt _ 4 [Tl(t)} B |:T0(t):| . where A= 1€1 1¢1
dTs(t) Ty(t) e(t) ko —kis — ko
dt mMoCo moCo

Roy Smith: ECE 147b 8: 16



State-space examples

Exercises:

1. What is B?
2. What is C?
3. What is D?
4. What would C' and D be if we had both 73(¢) and T5(t) as outputs?

t

. Calculate the transfer functions from e(t) and Ty(¢) to T4 (¢).
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State-space examples:

DC Motor connected to a rotational load

do
The “back emf” is proportional to motor speed: Vi,,p = K e

di .
The motor has a series resistance, R, and inductance, L, so Vi, = Vi, p + LE + Ri.

The motor torque is proportional to the motor current: 7 = K 1.

do
There is a friction torque, 7y opposing the motor and proportional to its speed: 7; = b e
2

The rotational load has inertia J so the torque balance equation is: J? + T =T
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State-space examples:

DC Motor connected to a rotational load

We are interested in the model from the input voltage, V;,, to the rotor angle, 6.

Exercise:

1. How many states are required for this model?
2. Derive a state-space representation.

3. What are the poles of the system?
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