
State-space systems

Representations: From transfer function to state-space.

Consider a linear, shift invariant, system:

P (z)! !
u(k)y(k)

We can express this as a transfer function,

y(z) = P (z) u(z) =
b(z)

a(z)
u(z)

where a(z) and b(z) are polynomials, so,

P (z) =
b(z)

a(z)
=

b0z
m + b1z

m−1 + · · · + bm

zn + a1zn−1 + · · · + an
.

For causal systems the order of b(z) is less than or equal to the order of a(z). So m ≤ n above.

Assume for now that m < n,
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State-space systems

Approach:

• Represent the plant, P (z) (or P (s)) as an nth order differential equation.

• Represent nth order differential equation as a 1st order matrix differential equation with
dimension n.

• Design methods now involve linear algebra.

• Easy to handle large systems (with Matlab).

• Easy to handle systems with multiple inputs and outputs.

• Easy to simulate systems.

x(k + 1) = A x(k) + B u(k),

y(k) = C x(k) + D u(k).

A, B, C and D can be matrices. x(k) is a vector (state vector).
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State-space systems

Chain of delays:

Consider the first equation: ζ(z) =
1

a(z)
u(z)

We want to develop a chain of delay model to get ζ(k):

First step: Write the expression for n delays:

ζ(k) = z−1 ζ(k + 1)
...

...
ζ(k + n − 1) = z−1ζ(k + n)

In pictures ...

z−1 z−1 z−1" "!!!
ζ(k + n)ζ(k + 1) ζ(k + n − 2) ζ(k + n − 1)ζ(k)

Second step: Express ζ(k + n) in terms of ζ(k), . . . , ζ(k + n − 1) and u(k).

Roy Smith: ECE 147b 8: 4

State-space systems

Outline:

1. Draw the system as an interconnected “chain of delays”,

2. Relabel the signals in the system,

3. Rewrite the input/output equations in terms of the new signals,

4. Abbreviate the equations to a matrix form (state-space).

Drawing a digital system block diagram in terms of delays is exactly the same as drawing a
continuous system block diagram in terms of integrators.

Split the system,

b(z)
1

a(z)
!" "

u(z)ζ(z)y(z)

ζ(z) =
1

a(z)
u(z) and y(z) = b(z) ζ(z).
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State-space systems

Block diagram of: ζ(z) =
1

a(z)
u(z)

ζ(k + n) = u(k) − (a1ζ(k + n − 1) + · · · + anζ(k)) .

z−1 z−1

a1

an−1

an

!!!! !
#$
%&
+'

" "
#$
%&
+

#−

'

" "
#$
%&
+

#

'

"

#

u(k)ζ(k + n)ζ(k + n − 1)ζ(k + 1)ζ(k)
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State-space systems

Second step: Express ζ(k + n) in terms of ζ(k), . . . , ζ(k + n − 1) and u(k).

To do this, write this as: ζ(z) a(z) = u(z),

Expanding a(z) gives,
(

zn + a1z
n−1 + · · · + an

)

ζ(z) = u(z)

and expressing this in terms of the highest power of z gives:

znζ(z) = u(z) −
(

a1z
n−1 + · · · + an

)

ζ(z).

Now write this is the time domain,

ζ(k + n) = u(k) − (a1ζ(k + n − 1) + · · · + anζ(k)) .

This is the form we need to include in our block diagram.
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“Chain of delays” block diagram

bm

bm−1

b0

z−1 z−1

a1

an−1

an

!!!!!( ()*
+,
+)*

+,
+ -

" ")*
+,
+

#−

-

" ")*
+,
+

#

-

"

#

!!)*
+,
+

$ -

!

$

u(k)
ζ(k + n)ζ(k + n − 1)

ζ(k + 1)

ζ(k + m)

ζ(k)y(k)

This could actually be constructed from shift registers, summers and multipliers.
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State-space systems

Numerator term: y(z) = b(z) ζ(z)

Expanding the b(z) polynomial gives,

y(z) = b(z) ζ(z),

=
(

b0z
m + b1z

m−1 + · · · + bm

)

ζ(z)

and in the time domain this is,

y(k) = b0ζ(k + m) + b1ζ(k + m − 1) + · · · + bmζ(k).

As m < n all of the signals ζ(k) to ζ(k + m) are available along to the top of the chain of
delays.

So y(k) is just a linear combination of signals from the previous block diagram.
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State-space representations

Developing the matrix equations

Relabel our intermediate variables,

x1(k) = ζ(k + n − 1)

x2(k) = ζ(k + n − 2)
...

...

xn(k) = ζ(k)

Now work out what happens to each of them at time k + 1:

x1(k + 1) = ζ(k + n) = u(k) − (a1ζ(k + n − 1) + · · · + anζ(k))
= u(k) − (a1x1(n) + · · · + anxn(k))

x2(k + 1) = ζ(k + n − 2 + 1) = x1(k)
...

...
...

xn(k + 1) = ζ(k + 1) = xn−1(k)

Now look at this as a matrix multiplication.
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State-space representations

What if m = n ?

Remove the highest order terms by polynomial division,

b(z)

a(z)
= d +

b̂(z)

a(z)
.

Now d is a constant and b̂(z) has order m − 1 < n.

We deal with
b̂(z)

a(z)
exactly as before and then add the constant, d, to the result.

In pictures . . .

b̂(z)

a(z)

d

!!!! '

!

#
)*
+,
+

u(k)y(k)
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State-space representations

Matrix equations

x(k + 1) = A x(k) + B u(k),

where

A =











−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
... . . . . . . ...
0 · · · 1 0











and B =











1
0
...
0











This is the “state-update” equation (or sometimes just the “state”equation).

What about the output y(k)?

y(k) = b0ζ(k + m) +b1ζ(k + m − 1) · · · +bmζ(k)

= b0xn−m(k) +b1xn−m−1(k) · · · +bmxn(k)

= C x(k)

where C =
[

0 . . . 0 b0 . . . bm

]

. If m = n − 1 then there are no leading zeros in C.
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State-space representations

Matrix equations

x1(k + 1) = −a1 x1(k) −a2 x2(k) · · · −an−1 xn−1(k) −an xn(k) + u(k)
x2(k + 1) = x1(k)
x3(k + 1) = x2(k)

...
xn(k + 1) = xn−1(k)

or . . .











x1(k + 1)
x2(k + 1)

...
xn(k + 1)











=











−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
... . . . . . . ...
0 · · · 1 0





















x1(k)
x2(k)

...
xn(k)











+











1
0
...
0











u(k)

Define the state: x(k) =











x1(k)
x2(k)

...
xn(k)











to get the final equations.
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State-space systems

Other domains:

Discrete time,
time invariant:

x(k + 1) = A x(k) + B u(k),

y(k) = C x(k) + D u(k)

Continuous time,
time invariant:

d x(t)

dt
= A x(t) + B u(t),

y(t) = C x(t) + D u(t)

Nonlinear,
time invariant:

d x(t)

dt
= f(x(t), u(t)),

y(t) = g(x(t), u(t))

Nonlinear,
time varying:

d x(t)

dt
= f(t, x(t), u(t)),

y(t) = g(t, x(t), u(t))
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State-space systems

Equal numerator and denominator order case:

b̂(z)

a(z)

d

!!!! '

!

#
)*
+,
+

u(k)y(k) ŷ(k)

We can calcuate the state-space representation for
b̂(z)

a(z)
:

x(k + 1) = A x(k) + B u(k),

ŷ(k) = C x(k),

and as, y(k) = ŷ(k) + d u(k), we have,

x(k + 1) = A x(k) + B u(k),

y(k) = C x(k) + d u(k).

Roy Smith: ECE 147b 8: 13



State-space examples:

Thermal system:

Suppose that T1(t) is the output of interest and e(t) and T0(t) are both inputs.

Now select state variables which will allow us to put this into the generic state-space matrix
equation form.

Try x(t) =

[

T1(t)
T2(t)

]

.

Then, rearranging gives,

d T1(t)

dt
=

−k12

m1c1
T1(t) +

k12

m1c1
T2(t)

d T2(t)

dt
=

k12

m2c2
T1(t) +

−k12 − k20

m2c2
T2(t) +

k20

m2c2
T0(t) +

1

m2c2
e(t)

So,

A =









d T1(t)

dt

d T2(t)

dt









= A

[

T1(t)
T2(t)

]

+ B

[

T0(t)
e(t)

]

, where A =











−k12

m1c1

k12

m1c1

k12

m2c2

−k12 − k20

m2c2










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State-space systems

Examples: A thermal control system:

Heater

terminals

e(t)

T  (t)

T  (t)

T  (t)

2

0

1

Ti(t) temperature of volume i

e(t) energy into the volume 1
mi mass of volume i

ci specific heat for volume i

kij thermal conductance for i, j interface

We can derive the state-space representation directly from the thermal energy equations.

For volume 1: m1c1
d T1(t)

dt
= k12(T2(t) − T1(t))

For volume 2: m2c2
d T2(t)

dt
= −k12(T2(t) − T1(t)) − k20(T2(t) − T0(t)) + e(t)
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State-space examples:

DC Motor connected to a rotational load

L R

J

VinemfV

+

+

−

−

θ

i

τ

τf

The “back emf” is proportional to motor speed: Vemf = K
dθ

dt
.

The motor has a series resistance, R, and inductance, L, so Vin = Vemf + L
d i

dt
+ R i.

The motor torque is proportional to the motor current: τ = Kτ i.

There is a friction torque, τf opposing the motor and proportional to its speed: τf = b
d θ

dt
.

The rotational load has inertia J so the torque balance equation is: J
d2 θ

dt2
+ τf = τ.
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State-space examples

Exercises:

1. What is B?

2. What is C?

3. What is D?

4. What would C and D be if we had both T1(t) and T2(t) as outputs?

5. Calculate the transfer functions from e(t) and T0(t) to T1(t).
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State-space examples:

DC Motor connected to a rotational load

We are interested in the model from the input voltage, Vin, to the rotor angle, θ.

Exercise:

1. How many states are required for this model?

2. Derive a state-space representation.

3. What are the poles of the system?
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