State-space systems

Solving the state-space differential equation (Laplace approach)

Consider a continuous time state-space representation.

To begin, look at the zero-input solution
dx(t)

dt
Taking unilateral Laplace transforms gives,

= Aux(t).

sz(s) —x(0) = Az(s)  where =z(0)=xz(t) at t=0.
This gives,

(sI — A)x(s) = x(0), or x(s) = (sI — A)2(0).
Taking an inverse Laplace transform gives,

w(t) = LY(I-A)T}x0) = (t)x(0).
®d(t), is also known as the “State Transition Matriz”.
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State-space systems

Solving the state-space differential equation (Laplace approach)

Now consider the case where there is an input.

dx(t)
dt

Taking Laplace transforms gives,

si(s) = 2(0) = Aa(s) + Buls),

= Az(t) + Bu(t).

which means that,
z(s) = (sI — A) "t x(0) + (sI — A) ' Bu(s).
Now the inverse Laplace gives (recall that ®(t) is defined as £7{(sI — A)7'}),

t

x(t) = D(t) z(0 + /q)t—TBquT.

(t) (t) z(0) ; (t —7)Bu(r)
zero-input solution convolution of ®(t) and Bu(t)

We can also use this equation for an arbitrary initial time,

o) = Bt —to) 2lty)  + /tq>(t77)3u(7)d7.

to
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State-space systems

A simple example: A first order system (« > 0).

y(s) - u(s)
S+«

Take the initial conditions to be zero. The differential equation is,

dzilistt) + ay(t) = au(t).
Define the state as, x(t) = y(t), then,
dZ—it) = —az(t) + au(l), o dz(tf) = [—a] z(t) + [a} u(t),
y(®) = a(®) v = [ie@  + [o]uw

So the state-space representation is: A = —a, B=«a, C' =1 and D = 0.
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State-space systems

Example (continued)

Now look at the State Transition Matrix,

o(t) = LY(sI—A)"}

= £} !
s+«

= e (this looks just like the impulse reponse)

So we can calculate ,

t
2(t) =e 2(0) + / efa(H)au(T) dr.
0

Step response: Zero initial condition (x(0) = 0).

Aswu(t)=1fort >0,

t t
y(t) = z(t) = e 0 + / e adr, = ef{"t/ e acdr,
0 0

_ e—at [ear ‘T:t —e?T |T:U] _ e—at (eat o 1) _ 1— e—at.

Roy Smith: ECE 147b 9: 4




Matrix exponentials

Matrix exponential approach

We will look at an alternative way of deriving ®(t) using the “matriz exponential”.

Consider the zero-input case, di;it) = Az(t).

Assume that z(¢) is smooth and look at an expansion of z(t) about a point ¢ = .
x(t) = vo + vi(t —to) + vz(tfto)2 + ..

Here the v; are constant vectors of the same size as x(t).

Let’s use the differential equation to work out v;, ¢ =0,1,...

As the above is supposed to hold for all ¢, choose t =ty to get,

x(to) = vo This gives us the first vector in the expansion.
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Matrix exponentials

To get the next term differentiate the expansion to give,

dx(t
flg) = v + 27)2(7&775()) + 31)3(t7t0)2 I
Again choosing t = t; gives,
d.%’(to) -
at

dz(t
But we know that a;i ) = Auzx(t), so,

v = Al(to)

Differentiate again to get,

da(t
;;g) = 20y + Gus(t —to) + 1204(t — tg)? +---
: . 1d2.’L'(t0)
Choosing t = t, gives, vy = gz
Pu(t)  dAx(t) d(t)
But = = A _ A2 . s
e a 7 z(t), so
AQ
V2 = 7 IL’(to)
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Matrix exponentials

We can keep differentiating, substituting ¢ = ¢y, and solving for the v; terms.
This eventually gives,
a(t) = x(to) + At —to) a(te) + A(t —to)2a(ty) + At —to)*x(ty) + -+

A? A3
= [T+ At —t) + 7(t—to)2 + y(t—to)?’ 4| a(ty).

define this as eA(t—10)

If ty = 0 (as is usually the case) we have,

z(t) = e z(0) and so d(t) = e

In MATLAB the command expm calculates the matrix exponential.

Caveat emptor. This is not the same as the exponential of the individual elements of a
matrix (which is calculated by the MATLAB command: exp).

Properties:
d eAt

eAseAt7 e—AteAt _ [7 7 _ AeAt.

A(s+t)

Ax0 _ 1'7 e
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Solving state-space differential equations

Matrix exponential approach to solving state-space differential equations.
We can begin by “guessing” a solution of the form,

z(t) = eo(t), where v(t) is a time-varying vector.
Differentiate this to get,

dx(t)
dt

dv(t)
— A At ¢ At
e u(t) + e 5

Az(t) + Bu(t). (from the differential equation)
Aeu(t) + Bu(t) (by substituting for x(t))

and by equating the first & third lines,

tdv(t) o
eA % = Bu(t)
do(t A
7 = ¢ A Bu(t)

Solve this by integrating to get:

v(t) —v(0) = /0 e A7 Bu(r) dr.
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Solving state-space differential equations

From before,

v(t) —v(0) = /0 e 7 Bu(r) dr.
but,
z(t) = eMout) so w(t) = e Mz(t) and v(0) = z(0).

Substituting these gives,

or,

I
@
=
8
—~
=)
=
+
c\
@
B
T
2
=
N
2
ISH
il

This is exactly the same solution as before where ®(t) = e,
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State transition matrix

B (s—1)
Pe) = e+

This system has a state-space representation:

A:[f’ *02], B:H, C=[1 -1, D=0

The state transition matrix is ®(t) = et = L71{(s] — A)~'}.

In this example:

el ) el

2 n -1 2 n -2
—9 - —9 -
_ot)st2 s+l s+2 0 s+ _ 27— 267 —2e!
1 1 1 9 7072t+07t 7072t+2C7t

s+2+5+1 5+2+s+1
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Transfer functions

Transfer functions (continuous time)

Assume that z(0) = 0.

Az(t) + Bu(t),
y(t) = Cux(t) + Dult).

Turn this into a transfer function simply by taking Laplace transforms and solving for

y(s)/uls).
Doing this gives,

sxz(t) = Aux(s) + Bu(s),
which implies that,

z(s) = (sI—A)"'Bu(s).
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Transfer functions

We also have,
y(s) = Cua(s) + Du(s).

and substituting for z(s) gives,
y(s)=[C(sI — A)"'B+ D] u(s).

So the transfer function is:

Example: (trivial)
A=—-a, B=a, C=1, D=0.

P(s) = CGI-A'B+D = 1(s—(-a)ta+0 =

s+a’
Discrete time case:

Perform the same operations with Z-transforms to get,

P(z) = C(zI—A7'B+D.
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Transfer functions

Example: (revisted)

B (s—1)
Pls) = GG+ 1)(s+2)

This system has a state-space representation:

A:hg ’02] B:H, c=[1 -1, D=0

From before we have,

(sIfA)”:;[S _2},

s(s+3)+2 |1 s+3
S0,
1 s =2 |1
I-A)"'B+D=—"—[1 -1
Cls "B+ 5(5+3)+2[ ]L s+3} HH)
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Poles and zeros

Poles and zeros

If a system, P(s), has a pole at s = p;, then its partial fraction expansion is,

0s)  Gop). (5—p). (5—pn) Gop) Gom  TGop

For the moment assume that p; is not repeated.

P(S) _ a(s) _ (S - Zl) R (5 - Zm) E, E; L,

The impulse response will be of the form,

p(t) = Ere!’ + -+ Eieht oo 4 et

The zero-input solutions of the corresponding differential equation will have terms of the
form,

y(t) = ke 4 ..

Look at this idea from a state-space point of view.

Roy Smith: ECE 147b 9: 14




Poles and zeros

State-space point of view:

dx(t
Consider the zero-input case, % = Az(t), and look at solutions of the form,
z(t) = e"'x(0).
Differentiating this gives,
dx(t v
I TR )
da(t
As =(t) = Aux(t), we have,
dt
Ax(t) = pi(t),
and taking ¢ = 0 gives,
Az(0) = px(0) «— This is an eigenvalue equation.

The eigenvalues of A are the poles of P(s).

The poles (eigenvalues) are also called “natural frequencies” or “modes” of P(s).
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Poles and zeros

Example: (yet again)

B (s—1)
Pls) = (s+1)(s+2)

This system has a state-space representation:

A:hg ’02] B:H, c=[1 -1, D=0

We will sometimes abbreviate this to,

-3 =211
P(s) = 1 0 |0 [. Note that the dimensions always make this possible.
1 -1 0

Eigenvalue equation:

The eigenvalues of A satisfy,

det(A] — A) = 0.
But here we see that this is simply the roots of the denominator,
detPff’ ﬂ = AMA+3) 12 = ANi3A+2 = A+DA+2) 0.
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Similarity transforms

Eigenvalues and similarity transforms

We can “diagonalize” most matrices by a transformation,

A1 0
A = VAV™Y where A= is diagonal.
0 >\n

In the previous example,
P R e

1 0 Tl —v2/2] [0 -1 -1 -2
N—— N— —
A 1% A vl

The MATLAB command eig does this eigenvalue decomposition.

Exercise:

1. Calculate this decomposition by hand.
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Similarity transforms

Similarity transforms

Define a new state, £(t), by the linear invertible transform,
Et)y =V ta(t) or, equivalently, z(t) =V £(1).

Recall the usual state-space equations,

d(t)

y(t) = Calt) + Dult),

and substitute for x(t).

vED —aven + Bun, B = veaven + vepa),
y(t) = CVER) + Dult), y(t) = CVE®R) + Du(t).

Substituting V1AV = A, gives,

%(tt) = A&(t)  + V' Bu(t),
y(t) = CVER) + Du(t).

This is a new (and completely equivalent) state-space description.
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Similarity transforms

Similarity transforms

Any invertible n x n matrix, V', can be used to transform a matrix,
A=vAv

The matrix, A is “similar” to (has the same eigenvalues as) A.

This is called a “similarity transform”.

Similarity transformed state-space representations

By defining a new state, £(t) = V=l a(t),
A| B _ [ v'Aav | v'B
C|D B cv | D

So there are obviously an infinite number of equivalent state-space representations.

Exercises:

1. Show that the eigenvalues of A are unchanged by a similarity transform.

2. Show that the transfer function is unchanged by a similarity transform of A.
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Poles and zeros

Zeros

If P(s) = y(s) has a zero at s = sy, then for all inputs u(sg) the output y(sg) = 0.

u(s)
This is equivalent to,
0=C(sol —A)'B + D

Using a state-space Laplace domain form (at s = sp) we have,

sox(so) = Ax(so) + Bu(so)
0 = Cux(so) + Dulsg)

This can be rearranged into matrix form,

o ]l

This means that the matrix,

{(501 —A) -B

. K (sol — A) —B} L

] is singular, or equivalently  det [ c D

Roy Smith: ECE 147b 9: 20




Poles and zeros

Summary: Continuous time

Poles are given by: det(sl —A) =0

Zeros are given by: det [( c D

Summary: Discrete time

Poles are given by: det(zI — A) =0

Zeros are given by: det [( c D

stA)fB}:Q

z[fA)fB}ZQ

Roy Smith: ECE 147b 9: 21



