
University of California, Santa Barbara

Department of Electrical & Computer Engineering

ECE 147b: Digital Control

Lab 1: Digital Control Design

Overview

This lab will look at various means of transforming continuous-time designs to discrete-time
designs. The plant we will attempt to control is the linear position servo. We will design
multiple controllers for use in the unity feedback loop shown in Figure 1.
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Figure 1: Closed-Loop System

Model Derivation

The DC motor equations are given by:

V = ImRm + KmKgωg

= ImRm + KmKg
ẋ

r
,

where V is the voltage applied to the motor, Im(Amp) is the motor current, Km( V

rad/ sec
) is

the back EMF constant, Kg is the gear ratio in the motor gearbox, ωg(
rad

sec
) is the motor

output angular velocity, ẋ( m

sec
) is the cart velocity, and r(m) is the radius of the motor pinion

that meshes with the track. The torque generated by the motor is:

τ = KmKgIm,
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which exerts a force, F , on the cart via the pinion,

F =
τ

r
.

This force results in an acceleration of the cart governed by Newton’s second law:

F = mcẍ,

where mc is the mass of the cart. Combining these two equations yields:

x

V
=

KmKgr

s
(

mcRmr2s + K2
mK2

g

) .

The values of the coefficients are tabulated below. These have been taken from the
manufacturer’s manual and may not be exactly correct for your particular hardware.

Parameter Value

Km Back EMF constant 0.00767 V/(rad/sec)
Rm Motor resistance 2.6 Ohms
Kg gear ratio 3.7
Np Motor pinion teeth 24
r pinion radius 0.00635 m
mc cart mass 0.455 kg

Substituting the numerical values for the constants in the above equation, and defining
P (s) = x/V , yields

P (s) =
3.78

s(s + 16.88)
. (1)

Equation 1 describes the linear position servo which we will control in this lab.

Analog Design Approaches

We can design a controller by root locus or Bode methods. A suitable controller is given by

C1(s) =
100(s + 16.88)

s + 30
.

This controller should place the poles of the closed-loop transfer function from the reference
to the output at −15.0 ± j12.4. Note that if no pole-zero cancellation is acchieved succesfully,
we will have another pole. In the cases that you have more than two poles, assign the others
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in stable locations. One possible location is −16.9 since the closed-loop transfer function from
the disturbance to the output has a pole at that location. Check this. Substituting

s =
1 − z−1

T
, (2)

into the expression for C1(s) gives a discrete equivalent with the following pulse transfer
function:

C1(z) =
b0z + b1

z + a1

=
b0 + b1z

−1

1 + a1z−1
.

Equation 2 is known as the backward difference transformation. You may implement this
filter in Simulink using the “Discrete Filter” block.

We will also consider another continuous design which attempts to account for the zero order
hold in the continuous-time design procedure. To do this, consider P (s) to be given by

P (s) =
1

(1 + 0.5Ts)

3.78

s(s + 16.88)
.

The additional pole provides additional phase and roll-off as an approximation to the effect of
the zero order hold. Now we would like to design a controller of the form

C2(s) =
B0s + B1

s + A1

,

to give a suitable closed-loop system. To make a fair comparison, we should place the
closed-loop poles in approximately the same locations as in the design of C1(s). In other
words, near −15.0 ± j12.4 and −16.9 if it is applicable. Note that in this design we will have
four poles. Check that the fourth pole is still stable. We will again use a backward difference
transformation (Equation 2) to discretize C2(s) and label the result C2(z).

We will consider two other methods of transforming C2(s) into a discrete-time controller. One
of these methods is called the bilinear (or trapezoidal) transformation, given by substituting

s =
2

T

(z − 1)

(z + 1)
, (3)

in C2(s). We label the resulting controller C3(z).

The second transformation method is known as zero-pole matching equivalents1. We noted
before that poles in the s-plane translate to poles in the z-plane via

zp = espT ,

1A step-by-step method of calculating zero-pole matching equvalents is given on p. 200 of Franklin & Powell
(3rd edition).
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where sp is an s-domain pole and zp is the corresponding z-domain pole. The idea here is that
we also apply this transformation to the zeros of the system. In other words,

z0 = es0T ,

where s0 and z0 are,respectively, the s-domain and z-domain zeros. The controller C2(s) has
only one pole and one zero. Construct the pole-zero equivalent of C2(s) and denote this
controller by C4(z). In your report you should derive an exact discrete model of the plant
with a zero order hold and check the closed-loop z-domain pole locations for each controller.

Direct Digital Design

You will experimentally examine the direct digital design methods described below during the
second week of this lab. Recall that the plant is given by

P (s) =
3.78

s(s + 16.88)
.

The zero-order hold equivalent of the plant is

P (z) =
3.78

16.882

((

16.88T + e−16.88T
− 1

)

z −
(

(16.88T + 1)e−16.88T
− 1

))

(z − 1) (z − e−16.88T )
,

or, equivalently,

P (z) =
α(z − β)

(z − 1) (z − e−16.88T )
,

where,

α =
3.88

(

16.88T + e−16.88T
− 1

)

16.882
, and β =

(

(16.88T + 1)e−16.88T
− 1

)

(16.88T + e−16.88T − 1)
.

You should check this. Using the above variables, and the controller

Ci(z) =
b0z + b1

z + a1

,

the closed-loop characteristic equation is

z3 + z2(a1 − 1 − e−16.88T + αb0) + z(α(b1 − βb0) − a1(1 + e−16.88T ) + e−16.88T )

+ (a1e
−16.88T

− αβb1) = 0.

Your report should include the above derivation with intermediate steps. Note that, although
this equation is quite messy, we can choose a1, b0, and b1 to arbitrarily place the poles of the
closed-loop system. In the continuous-time design procedure, the two oscillatory poles of the
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continuous-time closed-loop were at s0 = −15.0 ± j12.4. In the digital design, we will try
placing these poles at the z-domain locations given by

z0 = es0T .

The third pole will be placed at zero, giving a discrete-time controller which we will denote by
C5(z). This choice of zero for the third pole location is somewhat arbitrary. Another
controller, C6(z), will be designed with the third pole somewhere else.

The final controller, C7(z), will place all the poles at zero. In other words, we want the
characteristic equation to be

z3 = 0

This is known as a deadbeat controller.

Laboratory Procedure: Week 1

Prelab

The Prelab essentially involves doing all of the design calculations for C1(z) through C4(z). It
is essential that you do these before the lab in order to finish in the available time.

You will calculate (and implement in lab) each controller for three sample period choices:
T = 0.001 sec, T = 0.005 sec, and T = 0.01 sec. You should have twelve controllers calculated
before coming to lab. You should also predict whether or not each of the controllers will
stable, and give a brief description of their expected step response (i.e, fast, slow,
overdamped, oscillatory, . . . ).

1. Calculate C1(z) for each of the three sample periods.

2. Design C2(s) for the same three sample periods as above. Hint: Work this out as a
function of T and then just substitute in the required sampling period values.

3. Calculate the coefficients of C2(z) for each of the three sample periods.

4. Calculate the coefficients required to implement C3(z) for the three sample periods.

5. Calculate C4(z) for the three sample periods.

Experiment

Make the following connections to set up the linear position servo:
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• Connect analog output channel zero to the Universal Power Module “From D/A” jack.

• Connect the “To Load” jack on the Universal Power Module to the cart motor.

• Connect the encoder for cart position to encoder input channel zero. (You can tell
which encoder corresponds to cart position and which encoder corresponds to pendulum
angle by examining the wires coming from the connectors.)

Set the sampling period for the MultiQ-3 board to Ts = 0.001 sec. The encoder has 4096
counts per revolution and the gear circumference is 0.093043 m. Therefore, one revolution
corresponds to a distance of 0.093043 m. The calibration constant is then

0.093043 (m)

4096 (counts)
= 0.0000227 (m/count).

We want to generate a step response for each of the four controllers. You should record the
output of the controller, Ci(z), as well as the cart position (which is the output of the plant).

Note that you will be testing twelve different digital controllers. However, the experimental
setup is the same for each. All that is required is that you create multiple Simulink diagrams,
or simply change values inside a single Simulink diagram. If you take the time to generate
your Simulink diagrams before coming to lab, this lab will go very fast.

Laboratory Procedure: Week 2

Prelab

Again, calculate the controllers for each of the sample periods: T = 0.001 sec, T = 0.005 sec
and T = 0.01 sec. As before, predict the stability and nature of the response for each
controller.

1. Calculate the coefficients for C5(z).

2. Select a different location for the third pole and calculate the coefficients for C6(z).
Make sure that you select a stable location. You might try s0 = −16.9, which
approximates our continuous-time design.

3. Calculate the coefficients for C7(z).

Experiment

You have nine controllers to test during this lab session. The experimental setup is identical
to that of last week. As you would expect, if you take the time to generate your Simulink
diagrams before coming to lab, you should finish early.
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Record a step response for each controller. If you think other responses would be interesting,
record them also.

Pay particular attention to the deadbeat controller (C7(z)). Specifically, compare the actual
analog output (cart position) with the digital samples of the output. To do this, insert a
zero-order hold block after the calibration constant. Set the sampling period to be the same
as that in the discrete transfer function block and examine the signals both before and after
the zero-order hold. Be sure to use a sufficiently small time-scale when viewing the graph so
that you can clearly see what is happening between sampling times.

Laboratory report

The laboratory report is due one week from the date of the last session. Do not reproduce
every step response on a separate graph. Uses plots with multiple, labelled, lines so that the
reader can see at a glance the comparison you wish to make. Style will count for a significant
part of the grade. So think carefully about what it is you wish to say, and write it succinctly.
Readers are not impressed by volumes of repetitive data. Where necessary reference material
in textbooks or other sources.


