
ZOH equivalence in state-space

ZOH Equivalence

P (s) ZOH
@@
T

����
u(k)u(t)y(t)y(k)

P (s)











dx(t)

dt
= A x(t) + B u(t)

y(t) = C x(t) + D u(t).

We would like to get a description of the form,

P (z)







x(k + 1) = Ad x(k) + Bd u(k)

y(k) = Cd x(k) + Dd u(k).

Approach: Solve the state equation over one sample period.

x(t) = eAt x(0) +

∫ t

0

eA(t−τ) Bu(τ) dτ,

And over a single sample period (kT to kT + T ) this is,

x(kT + T ) = eAT x(kT ) +

∫ kT+T

kT

eA(kT+T−τ) Bu(τ) dτ,

Roy Smith: ECE 147b 10: 2

Discrete-time equivalents

Continuous to discrete transforms in state-space

We have several ways of calculating a discrete-time transfer function from a continuous-time
one, depending on the application.

ZOH Equivalence

P (s) ZOH
@@
T

����
u(k)u(t)y(t)y(k)

P (z) =
(

1− z−1
)

Z

{

P (s)

s

}

.

Controller approximation

z−1 ff
x(k + 1)x(k)

1

s
��

dx(t)

dtx(t)
Forward difference: C(z) = C(s) |s= z−1

T

Backward difference: C(z) = C(s) |s= z−1
Tz

Tustin/bilinear: C(z) = C(s) |
s= 2

T

(z−1)
(z+1)

Roy Smith: ECE 147b 10: 1



ZOH equivalence in state-space

ZOH equivalent

So far we have calculated x(k + 1) as a linear function of x(k) and u(k). What about y(k)?

y(kT ) = C x(kT ) + D u(kT ).

By definition, y(k) = y(kT ), and as u(t) is constant over the sample period, u(k) = u(kT ).

y(k) = C x(k) + D u(k).

Clearly then, Cd = C and Dd = D.

[

A B

C D

]

ZOH
=⇒





eAT

∫ T

0

eAη B dη

C D





Ad and Bd are calculated via Matlab commands c2d or zohequiv.

Roy Smith: ECE 147b 10: 4

ZOH equivalence in state-space

Key observation

The integration involves u(τ) from τ = kT to τ = kT + T .

But u(τ) is constant over this time period. It is the output of a ZOH.

So, u(τ) = u(k) for kT ≤ τ < kT + T .

Therefore,

x(kT + T ) = eAT x(kT ) +

[
∫ kT+T

kT

eA(kT+T−τ) B dτ,

]

u(k).

By our sampling definitions, x(t) |t=kT= x(k), so

x(k + 1) = eAT x(k) +
[

∫ kT+T

kT
eA(kT+T−τ) B dτ,

]

u(k).

= Ad x(k) + Bd u(k),

where, Ad = eAT , and Bd =

∫ kT+T

kT

eA(kT+T−τ) B dτ.

To simplify the Bd integral define η = kT + T − τ to get,

Bd =

∫ T

0

eAη B dη.

Roy Smith: ECE 147b 10: 3



Controller approximations in state-space

Controller (continuous-time)

C(s) ��
e(s)u(s) dxc(t)

dt
= A xc(t) + B e(t)

u(t) = C xc(t) + D e(t).

Forward difference approximation
1

s
≈

T

z − 1
or s ≈

z − 1

T
.

Take a Laplace transform of the controller equations,

s xc(s) = A xc(s) + B e(s)

u(s) = C xc(s) + D e(s),

and substitute, s =
z − 1

T
, x(s) = x(z), e(s) = e(z) and u(s) = u(z).

This effectively replaces the 1/s block with a forward difference approximation to integration,
and relabels all of the signals in the diagram as discrete-time signals.

Roy Smith: ECE 147b 10: 6

Controller approximations in state-space

C 1/s I

A

D

B ��
�
��
+���

�
��
+� u

�

6

u

-

6

u(t) xc(t)
dxc(t)

dt e(t)

Cd z−1 I

Ad

Dd

Bd
��

�
��
+���

�
��
+� u

�

6

u

-

6

u(k) xc(k) xc(k + 1) e(k)

Roy Smith: ECE 147b 10: 5



Forward difference approximations:

Poles of C(z)? Compare the eigenvalues of Ad to A.

Ad = I + AT

Exercises: Use the determinant definition of eigenvalues to show:

1. multiplying a matrix by a scalar multiplies all of the eigenvalues by the scalar;

2. adding the identity to a matrix adds 1 to all of the eigenvalues.

Eigenvalue/pole mapping result:

ImaginaryImaginary

Real Real

1-1

Mapping via

forward

difference

approximation

s-plane z-plane

Exercise: Repeat this for the backward difference and bilinear approximations.

Roy Smith: ECE 147b 10: 8

Forward difference approximation

The result of these substitutions is,

z − 1

T
xc(z) = A xc(z) + B e(z)

u(z) = C xc(z) + D e(z).

This is easily rearranged to get,

(z − 1) xc(z) = AT xc(z) + BT e(z)

u(z) = C xc(z) + D e(z),
or,

z xc(z) = (I + AT ) xc(z) + BT e(z)

u(z) = C xc(z) + D e(z).

This is now in discrete-time state-space form,

xc(k + 1) = (I + AT ) xc(k) + BT e(k)

u(k) = C xc(k) + D e(k).

Clearly then,

Ad = I + AT, Bd = BT, Cd = C and Dd = D.

Roy Smith: ECE 147b 10: 7



Fractional plant input delays

Controller timing diagram: Fast sampling with respect to calculation time.

Define an intermediate variable to calculate u(k) as fast as possible.

v(k) = C xc(k)

u(k) = v(k) + D e(k)

xc(k + 1) = A xc(k) + B e(k)

read A/D write D/A

wait

sample output

λ second delay

I/O operations:

u(kT) = v(kT)+De(kT) calculation:

x(kT+T) = Ax(kT)+Be(kT) calculation:

v(kT+T) = Cx(kT+T) calculation:

t = kT t = kT + λ

e(kT) sample

t = kT+T

e(kT+T)u(kT)

store u(kT) store x(kT+T) 

store v(kT+T)

time

[seconds]

Computation causes a delay (λ seconds) between controller input, e(k), and output, u(k).

Roy Smith: ECE 147b 10: 10

Continuous-time delay equivalences

Delays at the plant input:

P (s) e−λs ZOH
@@
T

�����
u(k)u(t)y(t)y(k)

This can arise in several ways:

1. The plant has a transport delay at its input. For example a flow delay in a process
control system.

2. The delay may actually be introduced by the calculation time of the controller (fraction
of a sample period).

The integer sample period part of any delay easy to handle. If the delay is mT seconds then
simply augment the plant with z−m.

The fractional part is harder. . .

Roy Smith: ECE 147b 10: 9



Fractional plant input delays

Solving the state equation

We now split the state equation integral into two pieces, corresponding to the times when the
input is constant.

x(k + 1) = eAT x(k) +

∫ kT+λ

kT

eA(kT+T−τ)B u(τ − λ) dτ +

∫ kT+T

kT+λ

eA(kT+T−η)B u(η − λ) dη

= eAT x(k) +

[
∫ kT+λ

kT

eA(kT+T−τ)B dτ

]

u(k − 1) +

[
∫ kT+T

kT+λ

eA(kT+T−η)B dη

]

u(k)

Define ξ = kT − τ + λ which means that dξ = −dτ and,

τ = kT =⇒ ξ = λ,

τ = kT + λ =⇒ ξ = 0.

This takes care of the first integral,

x(k + 1) = eAT x(k) +

[
∫ λ

0

eA(T−λ+ξ)B dξ

]

u(k − 1) +

[
∫ kT+T

kT+λ

eA(kT+T−η)B dη

]

u(k)

= eAT x(k) +

[

eA(T−λ)

∫ λ

0

eAξB dξ

]

u(k − 1) +

[
∫ kT+T

kT+λ

eA(kT+T−η)B dη

]

u(k)

Roy Smith: ECE 147b 10: 12

Fractional plant input delays

Deriving the state-space representation

The approach is the same as before, solve the state equation between t = kT and t = kT + T .

Because of the λ second delay (note that λ < T ), the state and output equations are now

x(kT + T ) = eAT x(kT ) +

∫ kT+T

kT

eA(kT+T−τ) Bu(τ − λ) dτ,

y(kT ) = C x(kT ) + D u(kT − λ).

Key observation: u(t) now has two constant values over the sample period:

u(t− λ) =

{

u(k − 1) for kT ≤ t < kT + λ,

u(k) for kT + λ ≤ t < kT + T

u(t)

u(k-1)

u(k)

u(k+1)

kT-T kT kT+T kT+2T

Time

kT+λ

u(t-λ)

Roy Smith: ECE 147b 10: 11



Fractional plant input delays

Putting all the pieces together

The transformed state equation is now,








x(k + 1)

w(k + 1)









=









eAT eA(T−λ)

∫ λ

0

eAξB dξ

0 0

















x(k)

w(k)









+









∫ T−λ

0

eAζB dζ

I









u(k).

To get the output equation note that u(kT − λ) = u(k − 1) = w(k), so,

y(kT ) = C x(kT ) + D u(kT − λ)

means that,

y(k) =
[

C D
]

[

x(k)
w(k)

]

+ 0 u(k).

When might we do this?

This adds an additional nu states to our state-space description.

It is only worth doing this when the sampling time is close to the cross over frequency. In this
case the delay could have a significant effect and we will need a precise model like this one.

Roy Smith: ECE 147b 10: 14

Fractional plant input delays

Solving the state equation

So far we have,

x(k + 1) = eAT x(k) +

[

eA(T−λ)

∫ λ

0

eAξB dξ

]

u(k − 1) +

[
∫ kT+T

kT+λ

eA(kT+T−η)B dη

]

u(k)

Define: ζ = kT + T − η which means that dζ = −dη and now,

η = kT + λ =⇒ ζ = T − λ,

η = kT + T =⇒ ζ = 0.

This takes care of the second integral,

x(k + 1) = eAT x(k) +

[

eA(T−λ)

∫ λ

0

eAξB dξ

]

u(k − 1) +

[
∫ T−λ

0

eAζB dζ

]

u(k)

We can now calculate all of the matrix terms, but it is still not quite in state-space form
(because x(k + 1) depends on both u(k) and u(k − 1)).

To fix this augment the state with u(k − 1).
To do this define,

w(k) = u(k − 1) and so, w(k + 1) = u(k) ←− this is a new state equation

Roy Smith: ECE 147b 10: 13


