Continuous to discrete transforms in state-space

We have several ways of calculating a discrete-time transfer function from a continuous-time one, depending on the application.

ZOH Equivalence

Controller approximation

Forward difference: $\quad C(z)=\left.C(s)\right|_{s=\frac{z-1}{T}}$
Backward difference: $C(z)=\left.C(s)\right|_{s=\frac{z-1}{T z}}$

Tustin/bilinear:
$C(z)=\left.C(s)\right|_{s=\frac{2}{T} \frac{(z-1)}{(z+1)}}$

ZOH Equivalence

We would like to get a description of the form,

$$
P(z)\left\{\begin{aligned}
x(k+1) & =A_{d} x(k)+B_{d} u(k) \\
y(k) & =C_{d} x(k)+D_{d} u(k) .
\end{aligned}\right.
$$

Approach: Solve the state equation over one sample period.

$$
x(t)=\mathrm{e}^{A t} x(0)+\int_{0}^{t} \mathrm{e}^{A(t-\tau)} B u(\tau) d \tau,
$$

And over a single sample period $(k T$ to $k T+T)$ this is,

$$
x(k T+T)=\mathrm{e}^{A T} x(k T)+\int_{k T}^{k T+T} \mathrm{e}^{A(k T+T-\tau)} B u(\tau) d \tau
$$

Key observation

The integration involves $u(\tau)$ from $\tau=k T$ to $\tau=k T+T$.
But $u(\tau)$ is constant over this time period. It is the output of a $Z O H$.
So, $u(\tau)=u(k)$ for $k T \leq \tau<k T+T$.
Therefore,

$$
x(k T+T)=\mathrm{e}^{A T} x(k T)+\left[\int_{k T}^{k T+T} \mathrm{e}^{A(k T+T-\tau)} B d \tau,\right] u(k) .
$$

By our sampling definitions, $\left.x(t)\right|_{t=k T}=x(k)$, so

$$
\begin{aligned}
x(k+1) & =\mathrm{e}^{A T} x(k)+\left[\int_{k T}^{k T+T} \mathrm{e}^{A(k T+T-\tau)} B d \tau,\right] u(k) . \\
& =A_{d} x(k)+B_{d} u(k),
\end{aligned}
$$

where, $\quad A_{d}=\mathrm{e}^{A T}, \quad$ and $\quad B_{d}=\int_{k T}^{k T+T} \mathrm{e}^{A(k T+T-\tau)} B d \tau$.
To simplify the B_{d} integral define $\eta=k T+T-\tau$ to get,

$$
B_{d}=\int_{0}^{T} \mathrm{e}^{A \eta} B d \eta
$$

ZOH equivalent

So far we have calculated $x(k+1)$ as a linear function of $x(k)$ and $u(k)$. What about $y(k)$?

$$
y(k T)=C x(k T)+D u(k T) .
$$

By definition, $y(k)=y(k T)$, and as $u(t)$ is constant over the sample period, $u(k)=u(k T)$.

$$
y(k)=C x(k)+D u(k) .
$$

Clearly then, $C_{d}=C$ and $D_{d}=D$.

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] \quad \stackrel{\text { ZOH }}{\Longrightarrow} \quad\left[\begin{array}{c|c}
\mathrm{e}^{A T} & \int_{0}^{T} \mathrm{e}^{A \eta} B d \eta \\
\hline C & D
\end{array}\right]
$$

A_{d} and B_{d} are calculated via Matlab commands c2d or zohequiv.

Controller approximations in state-space

Controller (continuous-time)

Forward difference approximation $\quad \frac{1}{s} \approx \frac{T}{z-1} \quad$ or $s \approx \frac{z-1}{T}$.
Take a Laplace transform of the controller equations,

$$
\begin{aligned}
s x_{c}(s) & =A x_{c}(s)+B e(s) \\
u(s) & =C x_{c}(s)+D e(s)
\end{aligned}
$$

and substitute, $s=\frac{z-1}{T}, \quad x(s)=x(z), \quad e(s)=e(z)$ and $\quad u(s)=u(z)$.
This effectively replaces the $1 / s$ block with a forward difference approximation to integration, and relabels all of the signals in the diagram as discrete-time signals.

The result of these substitutions is,

$$
\begin{aligned}
\frac{z-1}{T} x_{c}(z) & =A x_{c}(z)+B e(z) \\
u(z) & =C x_{c}(z)+D e(z) .
\end{aligned}
$$

This is easily rearranged to get,

$$
\begin{array}{rlrl}
(z-1) x_{c}(z) & =A T x_{c}(z)+B T e(z) \\
u(z) & =C x_{c}(z)+D e(z), & \text { or, } \quad z x_{c}(z) & =(I+A T) x_{c}(z) \\
& +B T e(z) \\
u(z) & =C x_{c}(z) & & +D e(z) .
\end{array}
$$

This is now in discrete-time state-space form,

$$
\begin{aligned}
x_{c}(k+1) & =(I+A T) x_{c}(k)+B T e(k) \\
u(k) & =C x_{c}(k)+D e(k) .
\end{aligned}
$$

Clearly then,

$$
A_{d}=I+A T, \quad B_{d}=B T, \quad C_{d}=C \quad \text { and } D_{d}=D
$$

Poles of $C(z)$? Compare the eigenvalues of A_{d} to A.

$$
A_{d}=I+A T
$$

Exercises: Use the determinant definition of eigenvalues to show:

1. multiplying a matrix by a scalar multiplies all of the eigenvalues by the scalar;
2. adding the identity to a matrix adds 1 to all of the eigenvalues.

Eigenvalue/pole mapping result:

Exercise: Repeat this for the backward difference and bilinear approximations.

Delays at the plant input:

This can arise in several ways:

1. The plant has a transport delay at its input. For example a flow delay in a process control system.
2. The delay may actually be introduced by the calculation time of the controller (fraction of a sample period).

The integer sample period part of any delay easy to handle. If the delay is $m T$ seconds then simply augment the plant with z^{-m}.

The fractional part is harder...

Controller timing diagram: Fast sampling with respect to calculation time.
Define an intermediate variable to calculate $u(k)$ as fast as possible.

$$
\begin{aligned}
v(k) & =C x_{c}(k) \\
u(k) & =v(k)+D e(k) \\
x_{c}(k+1) & =A x_{c}(k)+B e(k)
\end{aligned}
$$

Computation causes a delay (λ seconds) between controller input, $e(k)$, and output, $u(k)$.

Deriving the state-space representation

The approach is the same as before, solve the state equation between $t=k T$ and $t=k T+T$.
Because of the λ second delay (note that $\lambda<T$), the state and output equations are now

$$
\begin{aligned}
x(k T+T) & =\mathrm{e}^{A T} x(k T)+\int_{k T}^{k T+T} \mathrm{e}^{A(k T+T-\tau)} B u(\tau-\lambda) d \tau \\
y(k T) & =C x(k T)+D u(k T-\lambda) .
\end{aligned}
$$

Key observation: $u(t)$ now has two constant values over the sample period:

$$
u(t-\lambda)=\left\{\begin{array}{ll}
u(k-1) & \text { for } k T \leq t<k T+\lambda, \\
u(k) & \text { for } k T+\lambda \leq t<k T+T
\end{array}\right\}
$$

Solving the state equation

We now split the state equation integral into two pieces, corresponding to the times when the input is constant.

$$
\begin{aligned}
x(k+1) & =\mathrm{e}^{A T} x(k)+\int_{k T}^{k T+\lambda} \mathrm{e}^{A(k T+T-\tau)} B u(\tau-\lambda) d \tau+\int_{k T+\lambda}^{k T+T} \mathrm{e}^{A(k T+T-\eta)} B u(\eta-\lambda) d \eta \\
& =\mathrm{e}^{A T} x(k)+\left[\int_{k T}^{k T+\lambda} \mathrm{e}^{A(k T+T-\tau)} B d \tau\right] u(k-1)+\left[\int_{k T+\lambda}^{k T+T} \mathrm{e}^{A(k T+T-\eta)} B d \eta\right] u(k)
\end{aligned}
$$

Define $\xi=k T-\tau+\lambda$ which means that $d \xi=-d \tau$ and,

$$
\begin{array}{ll}
\tau=k T & \Longrightarrow \xi=\lambda \\
\tau=k T+\lambda & \Longrightarrow \xi=0
\end{array}
$$

This takes care of the first integral,

$$
\begin{aligned}
x(k+1) & =\mathrm{e}^{A T} x(k)+\left[\int_{0}^{\lambda} \mathrm{e}^{A(T-\lambda+\xi)} B d \xi\right] u(k-1)+\left[\int_{k T+\lambda}^{k T+T} \mathrm{e}^{A(k T+T-\eta)} B d \eta\right] u(k) \\
& =\mathrm{e}^{A T} x(k)+\left[\mathrm{e}^{A(T-\lambda)} \int_{0}^{\lambda} \mathrm{e}^{A \xi} B d \xi\right] u(k-1)+\left[\int_{k T+\lambda}^{k T+T} \mathrm{e}^{A(k T+T-\eta)} B d \eta\right] u(k)
\end{aligned}
$$

Solving the state equation

So far we have,

$$
x(k+1)=\mathrm{e}^{A T} x(k)+\left[\mathrm{e}^{A(T-\lambda)} \int_{0}^{\lambda} \mathrm{e}^{A \xi} B d \xi\right] u(k-1)+\left[\int_{k T+\lambda}^{k T+T} \mathrm{e}^{A(k T+T-\eta)} B d \eta\right] u(k)
$$

Define: $\zeta=k T+T-\eta$ which means that $d \zeta=-d \eta$ and now,

$$
\begin{aligned}
& \eta=k T+\lambda \quad \Longrightarrow \zeta=T-\lambda \\
& \eta=k T+T \quad \Longrightarrow \quad \zeta=0
\end{aligned}
$$

This takes care of the second integral,

$$
x(k+1)=\mathrm{e}^{A T} x(k)+\left[\mathrm{e}^{A(T-\lambda)} \int_{0}^{\lambda} \mathrm{e}^{A \xi} B d \xi\right] u(k-1)+\left[\int_{0}^{T-\lambda} \mathrm{e}^{A \zeta} B d \zeta\right] u(k)
$$

We can now calculate all of the matrix terms, but it is still not quite in state-space form (because $x(k+1)$ depends on both $u(k)$ and $u(k-1)$).

To fix this augment the state with $u(k-1)$.
To do this define,

$$
w(k)=u(k-1) \quad \text { and so, } \quad w(k+1)=u(k) \quad \longleftarrow \text { this is a new state equation }
$$

Putting all the pieces together

The transformed state equation is now,

$$
\left[\begin{array}{l}
x(k+1) \\
w(k+1)
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{e}^{A T} & \mathrm{e}^{A(T-\lambda)} \\
0 & \int_{0}^{\lambda} \mathrm{e}^{A \xi} B d \xi \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x(k) \\
w(k)
\end{array}\right]+\left[\begin{array}{c}
\int_{0}^{T-\lambda} \mathrm{e}^{A \zeta} B d \zeta \\
I
\end{array}\right] u(k)
$$

To get the output equation note that $u(k T-\lambda)=u(k-1)=w(k)$, so,

$$
y(k T)=C x(k T)+D u(k T-\lambda)
$$

means that,

$$
y(k)=\left[\begin{array}{ll}
C & D
\end{array}\right]\left[\begin{array}{c}
x(k) \\
w(k)
\end{array}\right]+0 u(k)
$$

When might we do this?

This adds an additional $n u$ states to our state-space description.
It is only worth doing this when the sampling time is close to the cross over frequency. In this case the delay could have a significant effect and we will need a precise model like this one.

