State Estimation

State Estimation

State feedback design assumes that we can measure the complete state.
What do we do if we cannot? Estimate it.

Approach: create a “model” of the system and use its state instead of the measured state.

C z_l + B
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State estimation

Propagating the model:

y(k) (k) u(k)
C z7t J‘r B
A Plant: P(z)
9(k) (k)
C z7t J‘r B
A “Model:” P(2)

To calculate an estimated state, Z(k), we must choose an initial estimated state, #(0), and
run it through out model.

Note that our controller will generate u(k) so we know what this is for times, k =0,..., k— 1.
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State estimation

Error properties:
Define the state estimation error:
z(k) = z(k) — (k).

Applying the state equation for both the model and the plant gives,

Z(k+1) = z(k+1) — 2(k+1)
= Aulk) — Ad(k)
= AG(k) — i(h))

A (k).

So the dynamics of the error, Z(k), are the same as the open-loop dynamics of the plant.

If the plant is open-loop unstable, the state estimation error, £(k), will blow up.
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State estimation

Error properties:

Look at the solution to the state equations:
w(k) = Aa(0) + ) A®Bu(j)

.
B(k) = A*2(0) + ) A®IBu(j)
j=0

Subtracting these gives,
(k) = A¥£(0) «—— the estimation error depends only on the initial error.

Again, it’s easy to see that if A is stable the transient caused by the initial estimation error
will decay to zero.

Can we do better?

Make use of the measurement, y(k).
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State estimation

Estimator: use the information in the error between y(k) and g(k).

y(k) z(k) u(k)
C 21 ® B
A Plant: P(z)
(k) (k)
@7 C 21— B
A
L
Estimator

Use some output error feedback, L(y(k) — (k)), to change the next state estimate, @(k + 1).
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State estimator

Error properties

The estimated state update equation is now,

#(k+1)

=

(k) + Bu(k) + L(y(k) — §(k))

A
Ai(k) + Bu(k) + LC(x(k) — &(k))

Now subtract this from the true state update equation to get the error equation,

Fk+1) = a(k+1) — 2(k+1)

A(a(k) — 2(k)) — LC(x(k) — &(k))
AZ(k) — LO E(k))
(A— LC)&(k).

Ax(k)+ Bu(k) — [A#k) + Bu(k) + LC(x(k) — 2(k)) ]

The estimator gain matrix, L, changes the error dynamics from A to A — LC.

Note the similarity with state-feedback which modifies the plant state dynamics via A — BK.
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State estimation

Designing an estimator
This comes down to choosing an L matrix.

Notice that the dynamics of the error are given by A — LC', so we can view this as a pole
placement problem.

Ackermann’s formula still works.

Note that

eig(A — LO) = eig(A — LC) = eig(AT — CTLT),
and this is exactly the same as the state feedback pole placement problem: A — BK.
Ackermann’s formula for L
Select pole positions for the error: 1y, M2, -+, M.
Specify these as the roots of a polynomial,
Yo(2) = (z=m)(z =) (z = 7n).

We will again use this polynomial with the A matrix as the variable,

Yo(A) = (A=mD(A=md) - (A=n.I).
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Estimator design

Designing L

Define the “observability matriz”,

C 0

CA :

0 = : and now L = (A0 0
CAnt 1

This can have an analogous problem to the controllability matrix, O may not be invertible.
Observability
The system is “observable” if and only if O is full rank.

Observability means that the states can be estimated from measurements of the output.

2
Example: Consider f = md—x ( a double integrator).

12
Good choices of state are = (position), and v (velocity).

Is the system observable by measuring =7

Is the system observable by measuring v?
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Qutput _feedback

State feedback with estimated states
We can now put the two pieces together:
State feedback: u(k) = —K z(k) < this is based on the true state.

and,

Estimator: 2(k+1) = (A— LC) (k) + Bu(k) + Ly(k).

To do this we use the estimated state to calculate the feedback:
u(k) = =K z(k).
This idea is also referred to as “certainty equivalence”; using our best estimate in place of
reality.
But will it work?
What is the effect of using #(k) in place of z(k)?

How will this affect the closed-loop poles of the plant?
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Qutput _feedback

The big picture: using both K and L to create C(z)

(k) LU pery B k)
A Plant: P(2)
i (k) K
S ﬁ(k) C 7! B
A
L Controller: C(z)
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Estimator /state feedback design

Closed-loop dynamics
The complete closed-loop system has 2n poles (n in the plant and n in the controller).

To derive the complete 2n x 2n state-space representation consider,

x(k+1) Az(k) + Bu(k)
— Ax(k) — BK @(k)
= Au(k) — BK (x(k) — 2(k))

= (A- BK)z(k) + BK &(k)

This gives an equation for n of the states. To get the other n consider,
Z(k+1) = (A= LC)z(k).
Putting these together gives:

e - P s
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Estimator /state feedback design

Closed-loop dynamics

Because this is block upper triangular,
. A—-—BK BK . .
elg<{ 0 A—LC’}) = {eig(A— BK), eig(A—LC) }.
The closed loop poles of the plant are not changed!

The fact that we can design the two parts (state feedback and estimator) independently, and
still get the same closed-loop dynamics when we join them together is known as the
“separation principle.”

Transient effects

Estimator errors (Z(k) # 0) don’t affect the closed-loop poles of the plant, but they do cause
an error transient.

This comes from the BK Z(k) term in the (k + 1) update equation.

-1 )

Because (k) — 0 as k — oo (if we designed L properly), this transient affect decays away.
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Estimator/state feedback controller

‘What does the controller look like?

2(k) -K

Controller: C(z)

#k+1) = Ad(k) + Bu(k) + L(y(k) — Ca(k))
= (A-LC)z(k) + Bu(k) + Ly(k)
= (A—-LC—-BK)#(k) + Ly(k) «—— dynamics are specified by L and K
and wu(k) = —-Kz(k)
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Tradeoffs in designing L

How should we design L7

If we make the poles of A — LC' fast the estimator error transient will decay quickly.
What is the tradeoff here though?

What prevents us from putting the poles as close to zero as we want?

Is there a problem if L is large?
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Estimator design

Noise!

G B e I G e P o (k)
n(k) x A Plant: P(z)
i (k) K
G?(k) C 2! B
A
L Controller: C(z)
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Designing L

Tradeoffs in the design of L
Noise enters the estimator equations,
2(k+1) = (A—LC - BK)&(k) + Ly(k) + Ln(k),
and corrupts the estimate.
The error is now given by,
(k+1) = (A= LC)Z(k) — Ln(k),
so, although it is still stable, it doesn’t decay to zero if n(k) # 0.
Note that the larger the size of L, the more the noise affects the error.

The complete closed-loop system is:

BEZEH - [A _OBK A?Izc] ng] + LOL} n(k).

Rule of Thumb: The estimator error poles should be placed 2 to 4 times faster than the
closed-loop poles.

This is a trade-off between estimator error transients and noise magnification.
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Estimator design

A final caveat:

The separation principle depended on the estimator model and the plant model being linear
and identical.

In reality this never happens. Our estimator model is only an approximation to physical
reality.

Our closed-loop poles will move as a result of these modeling errors.

Estimator sensitivity to errors in A:
— Because of the error feedback (via y(k)), A — LC is usually less sensitive than A to errors
between the model dynamics and the true system dynamics.
— However, too large a gain, L, may actually increase the sensitivity to errors.
— This is analagous to the Bode integral limitations on using output feedback to reduce the

closed-loop sensitivity.

Finding the correct trade-off between noise amplification, modeling error sensitivity, and the
estimation error dynamics, is often a matter of experiment.
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