
Reference inputs

Reference inputs

The reference state, xr, is determined by, xr(k) = Nx r(k).

For type 0 systems (no poles at z = 1), this will give a steady state error. In such systems
u 6= 0 at a non-zero equilibrium, and so x 6= xr.

Feedforward correction: uss(k) provides a steady-state input.
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The control input is: u(k) = K (xr(k) − x(k)) + uss(k).
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Reference tracking

Reference Tracking

The idea is to set the problem up as driving the state to a desired reference value.

Approach: (assume state feedback for the moment)
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Design the state feedback gain, K, for good closed-loop pole positions.

Implement it as: u(k) = K (xr(k) − x(k)).

xr(k) can be thought of as a “reference state.” This will make x(k) −→ xr(k) as k −→ ∞,
with the specified closed-loop dynamics.
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Reference inputs

Reference input matrices:

Combining the previous equations gives,
[

A − I B

C 0

] [

Nx

Nu

]

=

[

0
I

]

,

or, if the inverse exists,
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.

The matrix, Nu is effectively the inverse of the plant steady state gain.

This design will give a zero steady state error to a step, but only if Nu provides the exact
input required for the desired steady-state output.

This will not happen exactly in practice. What is a better method for getting zero steady
state error?
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Reference inputs

Reference input gain matrices:

We must design Nx to generate the reference state, and Nu to generate the control input
required to hold the system at the reference state.

Define xss = limk−→∞ x(k) (the steady state value of x(k), if it exists).

We want,

xr = Nx r = xss and C xss = yr = r.

This means that C Nx r = r, and if we want this to hold for all r, then we need,

C Nx = I.

At steady state,

x(k + 1) = A x(k) + B u(k) =⇒ xss = A xss + B uss,

and rearranging gives,

(A − I) xss + B uss = 0 =⇒ (A − I) Nx r + B Nu r = 0.

Again, we want this to hold for all r and so we require,

(A − I) Nx + B Nu = 0.
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Input saturation

Input saturation (and other nonlinearities)
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saturation

The actual input to the plant, v(k), is limited:

v(k) =



















umax if u(k) > umax

u(k) if umin ≤ u(k) ≤ umax

umin if u(k) < umin

Common cases:
umin = −umax (symmetric)
umin = 0 (asymmetric)

This happens in every physical situation.

Saturation can be a difficult problem if the control signal u(k) frequently exceeds the limits,
or exceeds them by a large margin.

The control design becomes nonlinear (and more difficult).

We can at least prevent the saturation from corrupting the estimator.
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Reference inputs

Output feedback case: We simply augment this with an estimator.
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The control is applied using the estimated state, x̂(k), in place of the true state, x(k).

u(k) = K (xr(k) − x̂(k)) + uss(k),

or, in terms of r(k),

u(k) = K (Nx r(k) − x̂(k)) + Nu r(k).

Roy Smith: ECE 147b 14: 5



Saturation:

Estimator with input saturation
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Model the actual plant input as v̂(k) (often accurate for saturation).

Make sure that the estimator “sees” the same input as the plant.

In some cases we can actually measure v(k) and use that in the estimator.

Roy Smith: ECE 147b 14: 7


