Integral control

Steady state tracking

Recall that integral control gives zero steady state error to a step even in the presence of
plant modelling mismatch.

This does not happen in our state feedback reference tracking scheme.
u(k) = K(zper — x(k)),
so if z(k) — x,¢s then u(k) — 0.

However with u(k) — 0, and no plant poles at z = 1, we have, y(k) — 0. Clearly then,
y(k) # r(k), the reference.

Feedforward compensation

Recall that the matrix N, can provide some steady-state feedforward compensation:

u(k) = K(zpey —z(k)) + Nyr(k),

1
~ plant steady state gain’

This is only correct if we know the plant steady state gain.
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Integral control

Integral control

Recall the idea behind integral control. If we consider the integral of the error at time, ¢,

/ (r(r) — y(r)) dr,
0

we want to make this quantity go zero. In other words,

lim [ (r(r) —y(r))dr = 0.

t—00 0

This means that as t — oo, the error must go to zero,

y(t) — r(t).

If this wasn’t the case (i.e. in steady state y # r), then the integral would end up going to cc.

Approach

Make the integral of the error (r(k) — y(k)) go to zero for state feedback.
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Integral control

Integral control

y(k) (k) u(k)

Augment the output, y(k) with an integrator.

z1(k) 1 vk u(k)

Iy
I
Q
5
J—«’g
N IS
+
oy

lj(k + 1) = xr

C 271 = B State space:
T xk+1) = Auxz(k) + Bu(k)

y(k) = Cu(k)

New variable: (k)
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Integral control

Augmented system
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This now has n + 1 states (or, in general, n plus the number of outputs).

Applying state feedback

If we now design a state feedback controller (using pole placement),

aw = - ke 5] 20,

then this will make (k) — 0 and the integrator output go to zero.

Reference tracking

Recall that we replaced u(k) = —K x(k) by u(k) = —K(x,¢; — x(k)).
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Integral control

Key idea
Replace (k) by x(k) —z,s (state error)

and
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(y(k) —r(k)) (integral of the tracking error).

This will make both the state error and the integral of the tracking error to go to zero.

Implementation:
) L (k) — y(k))
y(k) —r (k) —y
u(k):—[K[ K} z—1 :[KI K} z—1
(k) — Tyes Tyep — x(k)
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Integral control
Implementation
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If z(k) is not measured: build an estimator and use Z(k) in the above.
A feedforward term (N,) is no longer necessary.
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Reference error format

Reference error format

In some cases the controller has access only to the signal, e(k) = r(k) — y(k).

y(z)

P(z)

C(z)

Example: Room thermostats for temperature control.

Consequences?

State feedback/estimator design methods use separate measurements of y(k) and r(k).

Can we still do a state feedback design if we measure only e(k)?
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Reference error format

Estimation with only e(k)

Given a plant,

z(k+1) = Ax(k) + Bu(k)
yk) = Calk),

we build an estimator and state feedback controller via,

#(k+1) = (A—BK)z(k) + L(y(k) —Cz(k))

u(k) = —Ku(k),

or, equivalently,

i(k+1) = (A—BK—LC)i(k) + Ly(k)

u(k) = —Ku(k).

This isn’t quite in the correct form. We cannot use N, or N, as r(k) isn’t available.
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Reference error format

Estimation with only e(k)

#(k+1) = (A—BK —LO)i(k) + Ly(k)
ulk) = —Kux(k).

If we add an extra term, —Lr(k), we get,
#(k+1) = (A—BK — LC)a(k) + Ly(k) — Lr(k)
——
u(k) = —Kua(k) extra term

This is now in a form we can implement with only an e(k) measurement.
#(k+1) = (A—BK—LC)z(k) — Le(k)
u(k) = —Kua(k).
The term —Lr(k) is an unwanted input to the estimator and will cause an offset in the

estimation. If r(k) = 0 this isn’t a problem.
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