Sampling: period = T



**Example** (single pole signal)

Consider,  $y(t) = \begin{cases} e^{-at}, t \ge 0\\ 0 & t < 0 \end{cases}$  with a > 0. Laplace transform:  $y(s) = \frac{1}{s+a}$ . Sampled signal:  $y(k) = y(t) \Big|_{t=kT} = e^{-akT} = (e^{-aT})^k$ . Z-transform,  $y(z) = \frac{z}{z - e^{-aT}}$ .

The s-plane pole is at  $s_1 = -a$ , and the corresponding z-plane pole is at  $z_1 = e^{-aT}$ .

Roy Smith: ECE 147<br/>b $\mathbf{3}:$  1

Sampling

## Example: (second order)

Now consider a damped sinusoidal signal,  $y(t) = e^{-\alpha t} \sin(\beta t), \quad t \ge 0$ , with  $\alpha > 0$ . Laplace transform:  $y(s) = \frac{\beta}{(s+\alpha)^2 + \beta^2},$  Poles:  $s_{1,2} = -\alpha \pm j\beta$ . Sampled signal:  $y(k) = e^{-\alpha kT} \sin(\beta kT), \quad k \ge 0$ .



Roy Smith: ECE 147<br/>b ${\bf 3}:$  2

### General case:

Sampling maps the s-domain poles to the z-domain via:  $z_i = e^{s_i T}$ .

Stable continuous-time signals (Re  $\{s_i\} < 0$ ) map to stable discrete-time signals ( $|z_i| < 1$ ).

Pole locations under sampling:



Sampling



Changing the sampling frequency. (recall that  $z_i = e^{s_i T}$ .)

This is simply because there are more samples taken in the same time period.



Aliasing

Aliasing: What happens to signals of high frequencies  $(\omega > \pi/T)$ ?

As  $z_i = e^{s_i T}$ , sinusoids of frequencies from  $-\pi/T$  to  $\pi/T$  radians/second are mapped onto the unit disk by sampling.

Consider  $y(t) = \sin \omega_1 t$ , which has Laplace transform:  $y(s) = \frac{\omega_1}{s^2 + \omega_1^2}$ . Poles are  $s_{1,2} = \pm j\omega_1$ .

Sample at period T:  $y(k) = \sin \omega_1 kT$ ,

Z-transform: 
$$y(z) = \frac{z \sin w_1 T}{z^2 - 2 \cos \omega_1 T z + 1}$$

Poles of y(z) are  $z_{1,2} = e^{\pm j\omega_1 T}$ .

Slow sampling,  $T > \pi/\omega_1$ , implies that  $\omega_1 T > \pi$ . The pole angle is greater than  $\pi$ .



Roy Smith: ECE 147b **3**: 6

Having  $w_1 T > \pi$ , means that,

 $e^{-j\omega_1 T} = e^{j(2\pi - \omega_1 T)}$ , and  $e^{j\omega_1 T} = e^{-j(2\pi - \omega_1 T)}$ .

Now, if  $(2\pi - \omega_1 T)$  lies in the range 0 to  $\pi$  radians, the pole pattern is identical to that of a sinusoid of a lower frequency,  $\omega_a$ , where  $\omega_a T = 2\pi - \omega_1 T$ . Equivalently, the apparent frequency is,  $\omega_a = \frac{2\pi}{T} - \omega_1$ . (sampling freq:  $2\pi/T$  rad/sec).

## Example:

55 Hz Signal:  $y(t) = \cos(2\pi 55t)$ 

Sampling frequency: 1/T = 60 Hz

Then  $y(k) = \cos(2\pi 55t)|_{t=kT} = \cos(2\pi 5t)|_{t=kT}$ 

Indistinguishable from a sampled 5 Hz signal!

Roy Smith: ECE 147<br/>b $\mathbf{3}:\ 7$ 

Aliasing

Example: 55 Hz signal sampled at 60 Hz



# Sampled signals

The unit disk can only represent signals of frequency up to 1/2 the sampling frequency. (Nyquist frequency).

Sampling operation maps signal poles via:  $z_i = e^{s_i T}$ .

Maps the horizontal strip from  $-j\pi/T$  to  $j\pi/T$  onto the whole z-plane.



And  $\operatorname{Re}\{s\} < 0$  in this strip maps to the inside of the unit disk.

Roy Smith: ECE 147<br/>b $\mathbf{3}:$ 9

Aliasing

Aliasing: (ambiguous mapping of higher frequency signals)

Sampling also maps the next strip (from  $j\pi/T$  to  $j3\pi/T$ ) onto the whole z-plane and adds it into the result.



Also true for all (infinite)  $2\pi/T$  wide strips above and below the lowest frequency strip.

## Consequences of aliasing:

- Ambiguity. Our computer/controller cannot distinguish between frequencies inside the  $-\pi/T$  to  $\pi/T$  range and those outside of it.
  - Controller will respond incorrectly to an aliased signal (e.g. disturbance or error).
  - An aliased signal cannot be reconstructed (signal processing).

### Amelioration of the problem:



- Anti-aliasing filter. Low pass, rejecting  $|\omega| > \pi/T$ .
  - High frequency signals no longer enter loop erroneously.
  - High frequency disturbances/errors are "invisible."
  - Filter adds phase lag to the loop. (Potentially destabilizing!)

Roy Smith: ECE 147<br/>b $\mathbf{3}\text{:}$ 11