Modeling sampled systems

Modeling P(z)

Continuous-time

design
Model P(s), and
sample/hold as Approximation
P(2) of C(s) with C(z)

Discrete-time
design

e Develop a model of the discrete-time behavior of the plant.
e Allows digital designs to be performed directly.
e Evaluating the stability of the discrete-time system (C(z) and P(z) in feedback).

Roy Smith: ECE 147b 5: 1

Sample and hold systems

Sample and Hold Systems

The continuous-time plant, P(s), is preceeding by a zero-order hold and followed by a
sampler.

Performance and stability is specified in terms of the digital domain signals, r(k), y(k), u(k),
ete.

e Analog/Digital (A/D) board: sampler.
e Digital/Analog (D/A) board: zero-order hold.

Other options are possible but the above are by far the most common.
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Sample and hold systems

Sample and Hold Systems

Model the system from the ZOH block to the sampler:

y(k)

y(t)

u(t)

P(s)

Z0H

P(s) is an LTI system == the system from u(k) to y(k) is LSL

It has an equivalent Z-transform, P(z).

y(k)
O

P(z)

Zero-order hold equivalence: The closed-loop combination of P(z) and C(z) exactly
models P(s) in closed-loop at the sample times.

Roy Smith: ECE 147b 5: 3

Sample and hold systems

Zero-order hold equivalence

This is a reasonable model of a typical digital to analog (D/A) converter.

At the sample-time, t = kT, the discrete input, u(k), is put on the output, u(¢). This value is
held constant for the entire sample period. So,

u(t) =u(k), for KT <t<kT+T.

u(k) u(t)

Time: ¢

4T 5T 6T
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Zero-order hold equivalence

Pulse response

L r—o 0t<0
Pulse input: u(k) = { 0k ; 0 gives the output  w(t) =<9 1 0<t<T .
0t>T
1.5 -
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Lod u(k) u(?)
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Time: ¢

Equivalently, the pulse response is:
u(t) = step(t) — step(t — T'),

(step denotes the unit step function).
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Zero-order hold equivalence

Discrete-time transfer function
The discrete-time transfer function is the z-transform of the sampled pulse response.
For a pulse, u(k), the plant input is,
u(t) = step(t) — step(t — 7).
The plant output (in the Laplace domain) is

P(s)

y(s) = (1—e)
We now sample this, and take the Z-transform.

2{a-emy PO (PO L on PO POz f PO

(1—z*1)z{@}.

S

P(z)

Easily calculated via several MATLAB functions (c2d or zohequiv).
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Sampling in closed-loop

Design closed-loop (continuous-time)

y(s) r(s)
P(s) C(s) ()
Implemented closed-loop. Note C(z) approximates C(s).
y(k) y(t) u(t) u(k) r(k)
) P(s) Z0H C(z) —+)
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Sampling in closed-loop
Stability /Performance evaluation
P(z) is the zero-order hold equivalent of P(s).
y(k) r(k)
P(z) C(z) +

Remaining issues

e This analysis considers the system response at the sample times.

— Hidden oscillations

— Intersample behavior

e How should one modify C(z) if the discrete-time response is not satisfactory?
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Sampling in closed-loop

An example

Consider a proportional controller: C(s) = C(z) = K,,.
a
s+a’

And a simple plant: P(s) = a>0.

Imaginary
s-plane

Root locus

P(s)K, has one pole and no zeros.

A
X4

Y
)

Kp>0 Kp< 0 Real

The closed-loop, with C(s) = K,
is theoretically stable for all
-1 < K, <ooc.
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Sampling in closed-loop

The example continued

Increasing K, has the following effects:

e Decreasing the rise-time,
e Reducing the settling-time
e Reducing the steady-state tracking error.

e Increasing the controller output amplitude (more gain = more $).

In reality too much gain will eventually destabilize the continuous-time system (why?).

Digital implementation

ZOH equivalent for P(s): Approximation for C(s):
P(z) = (1—2*1)3{ Pls) }
s C(s)=K,s0C(z) =K,
— (1— ! a
- -2 G )
B 1— CfaT
C z—edl”

P(z) has a (stable) pole at z = ¢~T.
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Sampling in closed-loop

The example continued

Imaginary
z-plane
Root locus (discete-domain)
P(z)K, has one pole and no zeros.
. - 1 s:lT 1 Real
1+ K,P(z) is not stable < o0 Kp:() >

for all K, > 0!

Characteristic equation:

K,(1—eT
1+7"( fT):O,
z—e @

14e 9T

Closed-loop pole: z =e ' — K,(1 —e ). For K, > 1= ol

the system is unstable.

The ZOH adds potentially destabilizing phase lag to the feedback loop
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Sample and hold

Effect of a sample and hold

Consider the simplest possible system: a sampler and a ZOH.

a(t) u(k) u(t)
Z0H

ZOH Output:

e contains high frequency components (input was a single frequency).

e has the fundamental frequency component shifted by 7'/2 seconds.

Is this system LTI?
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Sample and hold

Effect of a sample and hold

Time [seconds]
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Sample and hold

Precompensate by including a delay in the continuous design

Pls)f| et/ f

The additional delay approximates the phase lag that the ZOH will introduce in the digital
implementation.

If C(s) is designed to work with P(s)e™*"/2, then it will probably work reasonably well for a
ZOH implementation of P(s).

Roy Smith: ECE 147b 5: 14




Sample and hold

Precompensate by including a delay in the continuous design
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Delay approximations

Rational approximations to e*7/2:

Padé Approximations P(s):

1
First order lag: TT/Q
S

1—sT/4

First order Padé: m

Nth order Padé: e %

Q

We typically use a first order Padé approximation which adds one pole and one zero to the
plant for our design of C/(s).

If the plant dynamics are close to the Nyquist frequency we may choose to use a second order
Padé approximation for greater accuracy.
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Delay approximations

. . . 1 , 1—sT/4
Rational approximations to e~*7/2: F(s) = ———— Padé(s) = 1=sT/4
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Delay approximations

Exercise:

Predict the range of stability for C'(s) = K, in the previous example where:

1. P(s) is augmented with a first order lag.

2. P(s) is augmented with a first order Padé approximation.

How do these stability ranges compare to the actual stability range for P(z)K,?
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