
Sample and hold systems

Sample and Hold Systems

The continuous-time plant, P (s), is preceeding by a zero-order hold and followed by a
sampler.
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r(k)u(k)u(t)y(t)y(k)

Performance and stability is specified in terms of the digital domain signals, r(k), y(k), u(k),
etc.

• Analog/Digital (A/D) board: sampler.

• Digital/Analog (D/A) board: zero-order hold.

Other options are possible but the above are by far the most common.
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Modeling sampled systems

Modeling P (z)

P(s) C(s)

C(z)P(z)

Approximation

of C(s) with C(z)

Model  P(s), and

sample/hold as

P(z)

Continuous-time

design

Discrete-time

design

• Develop a model of the discrete-time behavior of the plant.

• Allows digital designs to be performed directly.

• Evaluating the stability of the discrete-time system (C(z) and P (z) in feedback).
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Sample and hold systems

Zero-order hold equivalence

This is a reasonable model of a typical digital to analog (D/A) converter.

At the sample-time, t = kT , the discrete input, u(k), is put on the output, u(t). This value is
held constant for the entire sample period. So,

u(t) = u(k), for kT ≤ t < kT + T.
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Sample and hold systems

Sample and Hold Systems

Model the system from the ZOH block to the sampler:

P (s) ZOH
@@
T

����
u(k)u(t)y(t)y(k)

P (s) is an LTI system =⇒ the system from u(k) to y(k) is LSI.

It has an equivalent Z-transform, P (z).

P (z) ff
u(k)y(k)

Zero-order hold equivalence: The closed-loop combination of P (z) and C(z) exactly
models P (s) in closed-loop at the sample times.
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Zero-order hold equivalence

Discrete-time transfer function

The discrete-time transfer function is the z-transform of the sampled pulse response.

For a pulse, u(k), the plant input is,

u(t) = step(t) − step(t − T ).

The plant output (in the Laplace domain) is

y(s) =
(

1 − e−Ts
) P (s)

s
.

We now sample this, and take the Z-transform.

P (z) = Z

{

(

1 − e−Ts
) P (s)

s

}

= Z

{

P (s)

s

}

−Z

{

e−TsP (s)

s

}

= Z

{

P (s)

s

}

− z−1Z

{

P (s)

s

}

= (1 − z−1)Z

{

P (s)

s

}

.

Easily calculated via several Matlab functions (c2d or zohequiv).
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Zero-order hold equivalence

Pulse response

Pulse input: u(k) =

{

1 k = 0
0 k 6= 0

, gives the output u(t) =







0 t < 0
1 0 ≤ t < T
0 t ≥ T

.
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Equivalently, the pulse response is:

u(t) = step(t) − step(t − T ),

(step denotes the unit step function).
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Sampling in closed-loop

Stability/Performance evaluation

P (z) is the zero-order hold equivalent of P (s).

P (z) C(z) ��
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r(k)y(k)

Remaining issues

• This analysis considers the system response at the sample times.

– Hidden oscillations

– Intersample behavior

• How should one modify C(z) if the discrete-time response is not satisfactory?
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Sampling in closed-loop

Design closed-loop (continuous-time)

P (s) C(s) ��
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−
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r(s)y(s)

Implemented closed-loop. Note C(z) approximates C(s).

P (s) ZOH C(z)
@@
T ��

��
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−

v ������

6

r(k)u(k)u(t)y(t)y(k)
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Sampling in closed-loop

The example continued

Increasing Kp has the following effects:

• Decreasing the rise-time,

• Reducing the settling-time

• Reducing the steady-state tracking error.

• Increasing the controller output amplitude (more gain ⇒ more $).

In reality too much gain will eventually destabilize the continuous-time system (why?).

Digital implementation

ZOH equivalent for P (s):

P (z) = (1 − z−1)Z

{

P (s)

s

}

= (1 − z−1)Z

{

a

s(s + a)

}

=
1 − e−aT

z − e−aT
.

P (z) has a (stable) pole at z = e−aT .

Approximation for C(s):

C(s) = Kp so C(z) = Kp
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Sampling in closed-loop

An example

Consider a proportional controller: C(s) = C(z) = Kp.

And a simple plant: P (s) =
a

s + a
, a > 0.

Root locus

P (s)Kp has one pole and no zeros.

The closed-loop, with C(s) = Kp,
is theoretically stable for all
−1 < Kp ≤ ∞.
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Sample and hold

Effect of a sample and hold

Consider the simplest possible system: a sampler and a ZOH.

ZOH
@@
T

���
u(t)u(k)û(t)

ZOH Output:

• contains high frequency components (input was a single frequency).

• has the fundamental frequency component shifted by T/2 seconds.

Is this system LTI?
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Sampling in closed-loop

The example continued

Root locus (discete-domain)

P (z)Kp has one pole and no zeros.

1 + KpP (z) is not stable
for all Kp > 0!

Characteristic equation:

1 +
Kp(1 − e−aT )

z − e−aT
= 0,

Real

Imaginary

z-plane

K  > 0p K  < 0p

-1 1e-aT

Closed-loop pole: z = e−aT − Kp(1 − e−aT ). For Kp >
1 + e−aT

1 − e−aT
, the system is unstable.

The ZOH adds potentially destabilizing phase lag to the feedback loop
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Sample and hold

Precompensate by including a delay in the continuous design

P (s) e−sT/2 ���
u(t)y(t)

The additional delay approximates the phase lag that the ZOH will introduce in the digital
implementation.

If C(s) is designed to work with P (s)e−sT/2, then it will probably work reasonably well for a
ZOH implementation of P (s).
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Sample and hold

Effect of a sample and hold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

Time [seconds]

Input sinusoid

Samples

ZOH output

ZOH output 1st harmonic

Roy Smith: ECE 147b 5: 13



Delay approximations

Rational approximations to e−sT/2:

Padé Approximations P (s):

First order lag:
1

1 + sT/2

First order Padé:
1 − sT/4

1 + sT/4

Nth order Padé: e−θs ≈

(

1 − θ
2ns

)n

(

1 + θ
2ns

)n

We typically use a first order Padé approximation which adds one pole and one zero to the
plant for our design of C(s).

If the plant dynamics are close to the Nyquist frequency we may choose to use a second order
Padé approximation for greater accuracy.
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Sample and hold

Precompensate by including a delay in the continuous design
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Delay approximations

Exercise:

Predict the range of stability for C(s) = Kp in the previous example where:

1. P (s) is augmented with a first order lag.

2. P (s) is augmented with a first order Padé approximation.

How do these stability ranges compare to the actual stability range for P (z)Kp?
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Delay approximations

Rational approximations to e−sT/2: F (s) =
1

1 + sT/2
Padé(s) =

1 − sT/4

1 + sT/4
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