
Sampling

Model of the sampling process

r(t)

time: t

time: t

Sampling impulse train:   v(t)

Continuous-time signal: 
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time: t0
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Sampled signal:    r(t)v(t)

Model sampling as time-domain multiplication by
a train of impulses.

r∗(t) = r(t)v(t)

=
∞
∑

k=−∞

r(t)δ(t − kT )

Taking the Laplace transform,

L{r∗(t)} =

∫ ∞

−∞

r∗(t)e−stdt

=

∫ ∞

−∞

∞
∑

k=−∞

r(t)δ(t − kT )e−stdt

=
∞
∑

k=−∞

r(kT )e−skT

=: R∗(s)
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Sampling

What is really happening with sampling?

�@@d

r(t)r∗(t)

T

Recall that sampling maps strips of the s-plane onto the z-plane.

ImaginaryImaginary

Real Real

1-1

π/T

−π/T

Mapping via

sampling

s-plane z-plane

What does this look like from a Fourier Transform point of view?
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Sampling

Impulse trains

−2ωs

-3T

time: t

Sampling impulse train

(time-domain)

0-T-2T T 2T 3T

1

frequency: 

0-ω

2π/T

Sampling impulse train

(frequency domain)

ω

s ωs 2ωs

Fourier series representation:

v(t) =
∞
∑

k=−∞

δ(t − kT )

=
1

T

∞
∑

n=−∞

ejn( 2π

T )t

=
1

T

∞
∑

n=−∞

ejnωst

Fourier Transform:

v(s) =
2π

T

∞
∑

n=−∞

δ(ω − nωs)

(note: ωs = 2π/T ).

A train of impulses is equivalent to an infinite sum
of (equal) sinusoids.
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Impulse trains

−2ωs

-3T

time: t

Sampling impulse train

(time-domain)

0-T-2T T 2T 3T

1

frequency: 

0-ω

2π/T

Sampling impulse train

(frequency domain)

ω

s ωs 2ωs

Fourier series representation

Impulse trains are periodic (with period T ) and so
have a Fourier series:

v(t) =
∞
∑

k=−∞

δ(t − kT ) =
∞
∑

n=−∞

Cne
jn( 2π

T )t

The Fourier coefficients, Cn, are given by,

Cn =
1

T

∫ T/2

−T/2

∞
∑

k=−∞

δ(t − kT )e−jn( 2π

T )tdt

=
1

T

∫ T/2

−T/2

δ(t)e−jn( 2π

T )tdt

=
1

T

∫ T/2

−T/2

δ(t)dt

=
1

T
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Sampling

Spectrum of a sampled signal

frequency: 

0

ω

π/T−π/T 2π/T 3π/T−2π/T−3π/T

frequency: 

0

ω

π/T−π/T 2π/T−2π/T

|R(jω)|

|R (jω)|*Aliased signal components

Nyquist

frequency

Sampling

frequency

Aliasing: If |R(jω)| 6= 0 for |w| > π/T then the shifted parts of the spectrum overlap.
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Sampling

Spectrum of a sampled signal

R∗(s) = L{r∗(t)} =

∫ ∞

−∞

r∗(t)e−stdt

=

∫ ∞

−∞

r(t)

(

1

T

∞
∑

n=−∞

ejnωst

)

e−stdt

=
1

T

∞
∑

n=−∞

∫ ∞

−∞

r(t)ejnωste−stdt

=
1

T

∞
∑

n=−∞

∫ ∞

−∞

r(t)e−(s−jnωs)tdt

=
1

T

∞
∑

n=−∞

R(s − jnωs).

The spectrum of the sampled signal is an infinite sum of shifted versions of the original
spectrum.
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Sampling

Spectrum of a sampled signal

frequency: 

0

ω

π/T−π/T 2π/T−2π/T

|R(jω)|

−2ωs

frequency: 

0-ω

2π/T

Sampling impulse train, v(jω)

(frequency domain)

ω

s ωs 2ωs

Frequency domain convolution

R∗(jω) =
1

2π
R(jω) ∗ v(jω)

=
1

2π

∫ ∞

−∞

2π

T

∞
∑

n=−∞

δ(ν − jnωs)R(jω − ν)dν

=
1

T

∞
∑

n=−∞

∫ ∞

−∞

δ(ν − jnωs)R(jω − ν)dν

=
1

T

∞
∑

n=−∞

R(jω − jnωs)

frequency: 

0

ω

π/T−π/T 2π/T 3π/T−2π/T−3π/T

|R (jω)|*
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Spectrum of a sampled signal
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Sampling impulse train: v(t)

(time-domain)

0-T-2T T 2T 3T

1
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frequency: 
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Sampling impulse train, v(jω)

(frequency domain)
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v(t) =
∞
∑

k=−∞

δ(t − kT ) =
1

T

∞
∑

n=−∞

ejnωst
FT
⇐⇒ v(s) =

2π

T

∞
∑

n=−∞

δ(ω − nωs)

Multiplication/convolution duality: r∗(t) = r(t)v(t)
FT
⇐⇒ R∗(jω) = 1

2πR(jω) ∗ v(jω)

frequency: 
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ω

π/T−π/T 2π/T−2π/T

|R(jω)|

∗

−2ωs

frequency: 
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Sampling

Aliasing: The effects of an anti-aliasing filter: F (s)

F (s)
@@
T

���
r(t)rF (t)rF (k)

frequency: 

0

ω

π/T−π/T

|R(jω)||F(jω)R(jω)|

|F(jω)| 1

In control systems the phase effects of F (s) are usually much more important (i.e. potentially
destabilizing).
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Sampling

Aliasing, what can we do?

We have seen that if R(jω) 6= 0 for |ω| > π/T then the signal will be aliased.

The frequency components of the original signal cannot be deduced from the sampled signal.

The control system will react (incorrectly) to aliased errors and disturbances.

Options

1. Sample faster. T is decreased and ωs is increased.

– This costs more money, and may also degrade the resolution.

2. Include a low-pass anti-aliasing filter to remove the frequency components |ω| > π/T .

– We lose all information about the higher frequency components.

– In a closed-loop system the extra phase lag due to F (s) degrades (or even
destabilizes) the closed-loop operation.

– Signal reconstruction is not the most critical part of closed-loop operation.
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Sampling

Reconstruction
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Sampling

Reconstruction

How do we recover r(t) from the sampled signal, r∗(t)?

Reconstruction Filter

L(s)
@@
T

���
u(t)u(k)y(k)

Ideal case:

L(jω) =

{

1, |ω| < π/T

0, |ω| ≥ π/T

But the impulse response of L(s) is:
T

πt
sin(πt/T ) = sinc(πt/T )

This is acausal and unstable!
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Sampling

How good is a ZOH at reconstruction?
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Sampling

How good is a ZOH at reconstruction?

The ZOH is the cheapest and most readily available reconstruction filter. How good is it?

The ZOH frequency response (for the fundamental frequency only) is given by:

ZOH(jω) =
1 − e−jωT

jω

= e−jωT/2

(

ejωT/2 − e−jωT/2

2j

)

2j

jω

= T e−jωT/2 sin(ωT/2)

ωT/2

= T e−jωT/2sinc(ωT/2)

So the ZOH looks something like a low pass filter in cascade with a delay of T/2 seconds.

It is not very close to the ideal filter, and it has quite a lot of phase lag.
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