Approach:

- Represent the plant, $P(z)$ (or $P(s)$) as an nth order differential equation.
- Represent nth order differential equation as a 1st order matrix differential equation with dimension n.
- Design methods now involve linear algebra.
- Easy to handle large systems (with Matlab).
- Easy to handle systems with multiple inputs and outputs.
- Easy to simulate systems.

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k), \\
y(k) & =C x(k)+D u(k) .
\end{aligned}
$$

A, B, C and D can be matrices. $x(k)$ is a vector (state vector).

Representations: From transfer function to state-space.
Consider a linear, shift invariant, system:

We can express this as a transfer function,

$$
y(z)=P(z) u(z)=\frac{b(z)}{a(z)} u(z)
$$

where $a(z)$ and $b(z)$ are polynomials, so,

$$
P(z)=\frac{b(z)}{a(z)}=\frac{b_{0} z^{m}+b_{1} z^{m-1}+\cdots+b_{m}}{z^{n}+a_{1} z^{n-1}+\cdots+a_{n}} .
$$

For causal systems the order of $b(z)$ is less than or equal to the order of $a(z)$. So $m \leq n$ above. Assume for now that $m<n$,

Outline:

1. Draw the system as an interconnected "chain of delays",
2. Relabel the signals in the system,
3. Rewrite the input/output equations in terms of the new signals,
4. Abbreviate the equations to a matrix form (state-space).

Drawing a digital system block diagram in terms of delays is exactly the same as drawing a continuous system block diagram in terms of integrators.

Split the system,

$$
\zeta(z)=\frac{1}{a(z)} u(z) \quad \text { and } \quad y(z)=b(z) \zeta(z) .
$$

State-space systems

Chain of delays:

Consider the first equation: $\quad \zeta(z)=\frac{1}{a(z)} u(z)$
We want to develop a chain of delay model to get $\zeta(k)$:
First step: Write the expression for n delays:

$$
\begin{array}{rll}
\zeta(k) & = & z^{-1} \zeta(k+1) \\
\vdots & & \vdots \\
\zeta(k+n-1) & = & z^{-1} \zeta(k+n)
\end{array}
$$

In pictures ...

Second step: Express $\zeta(k+n)$ in terms of $\zeta(k), \ldots, \zeta(k+n-1)$ and $u(k)$.

Second step: Express $\zeta(k+n)$ in terms of $\zeta(k), \ldots, \zeta(k+n-1)$ and $u(k)$.
To do this, write this as: $\zeta(z) a(z)=u(z)$,
Expanding $a(z)$ gives,

$$
\left(z^{n}+a_{1} z^{n-1}+\cdots+a_{n}\right) \zeta(z)=u(z)
$$

and expressing this in terms of the highest power of z gives:

$$
z^{n} \zeta(z)=u(z)-\left(a_{1} z^{n-1}+\cdots+a_{n}\right) \zeta(z)
$$

Now write this is the time domain,

$$
\zeta(k+n)=u(k)-\left(a_{1} \zeta(k+n-1)+\cdots+a_{n} \zeta(k)\right) .
$$

This is the form we need to include in our block diagram.
\qquad

Block diagram of: $\quad \zeta(z)=\frac{1}{a(z)} u(z)$

$$
\zeta(k+n)=u(k)-\left(a_{1} \zeta(k+n-1)+\cdots+a_{n} \zeta(k)\right) .
$$

Numerator term: $\quad y(z)=b(z) \zeta(z)$
Expanding the $b(z)$ polynomial gives,

$$
\begin{aligned}
y(z) & =b(z) \zeta(z), \\
& =\left(b_{0} z^{m}+b_{1} z^{m-1}+\cdots+b_{m}\right) \zeta(z)
\end{aligned}
$$

and in the time domain this is,

$$
y(k)=b_{0} \zeta(k+m)+b_{1} \zeta(k+m-1)+\cdots+b_{m} \zeta(k) .
$$

As $m<n$ all of the signals $\zeta(k)$ to $\zeta(k+m)$ are available along to the top of the chain of delays.

So $y(k)$ is just a linear combination of signals from the previous block diagram.
\qquad

This could actually be constructed from shift registers, summers and multipliers.

What if $\quad m=n \quad$?
Remove the highest order terms by polynomial division,

$$
\frac{b(z)}{a(z)}=d+\frac{\hat{b}(z)}{a(z)}
$$

Now d is a constant and $\hat{b}(z)$ has order $m-1<n$.
We deal with $\frac{\hat{b}(z)}{a(z)}$ exactly as before and then add the constant, d, to the result. In pictures...

Developing the matrix equations

Relabel our intermediate variables,

$$
\begin{aligned}
x_{1}(k)= & \zeta(k+n-1) \\
x_{2}(k)= & \zeta(k+n-2) \\
\vdots & \vdots \\
x_{n}(k)= & \zeta(k)
\end{aligned}
$$

Now work out what happens to each of them at time $k+1$:

$$
\begin{array}{ll}
x_{1}(k+1)=\zeta(k+n) & =u(k)-\left(a_{1} \zeta(k+n-1)+\cdots+a_{n} \zeta(k)\right) \\
& =u(k)-\left(a_{1} x_{1}(n)+\cdots+a_{n} x_{n}(k)\right) \\
x_{2}(k+1)=\zeta(k+n-2+1) & =x_{1}(k) \\
\vdots & \vdots \\
x_{n}(k+1)=\zeta(k+1) & = \\
x_{n-1}(k)
\end{array}
$$

Now look at this as a matrix multiplication.

Matrix equations

$$
\begin{array}{rrrrr}
x_{1}(k+1) & = & -a_{1} x_{1}(k) & -a_{2} x_{2}(k) & \cdots \\
x_{2}(k+1) & = & -a_{n-1} x_{n-1}(k) & -a_{n} x_{n}(k)+u(k) \\
x_{3}(k+1) & = & & \\
\vdots & & x_{2}(k) & \\
x_{n}(k+1) & = & & \\
\end{array}
$$

or ...

$$
\left[\begin{array}{c}
x_{1}(k+1) \\
x_{2}(k+1) \\
\vdots \\
x_{n}(k+1)
\end{array}\right]=\left[\begin{array}{ccccc}
-a_{1} & -a_{2} & \cdots & -a_{n-1} & -a_{n} \\
1 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & & \vdots \\
0 & \cdots & & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] u(k)
$$

Define the state: $x(k)=\left[\begin{array}{c}x_{1}(k) \\ x_{2}(k) \\ \vdots \\ x_{n}(k)\end{array}\right]$ to get the final equations.

Matrix equations

$$
x(k+1)=A x(k)+B u(k),
$$

where

$$
A=\left[\begin{array}{ccccc}
-a_{1} & -a_{2} & \cdots & -a_{n-1} & -a_{n} \\
1 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & & \vdots \\
0 & \cdots & & 1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

This is the "state-update" equation (or sometimes just the "state"equation).

What about the output $y(k)$?

$$
\begin{array}{rrrrr}
y(k) & =b_{0} \zeta(k+m) & +b_{1} \zeta(k+m-1) & \cdots & +b_{m} \zeta(k) \\
& = & b_{0} x_{n-m}(k) & +b_{1} x_{n-m-1}(k) & \cdots
\end{array}+b_{m} x_{n}(k)
$$

where $C=\left[\begin{array}{llllll}0 & \ldots & 0 & b_{0} & \ldots & b_{m}\end{array}\right]$. If $m=n-1$ then there are no leading zeros in C.

Equal numerator and denominator order case:

We can calcuate the state-space representation for $\frac{\hat{b}(z)}{a(z)}$:

$$
\begin{aligned}
x(k+1) & =A x(k) \quad+\quad B u(k), \\
\hat{y}(k) & =C x(k),
\end{aligned}
$$

and as, $y(k)=\hat{y}(k)+d u(k)$, we have,

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k), \\
y(k) & =C x(k)+d u(k) .
\end{aligned}
$$

Other domains:

Discrete time, time invariant:

Continuous time, $\quad \frac{d x(t)}{d t}=A x(t)+B u(t)$, time invariant:

Nonlinear, time invariant:

Nonlinear, time varying:

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k), \\
y(k) & =C x(k)+D u(k)
\end{aligned}
$$

$$
y(t)=C x(t)+D u(t)
$$

$\frac{d x(t)}{d t}=f(x(t), u(t))$, $y(t)=g(x(t), u(t))$
$\frac{d x(t)}{d t}=f(t, x(t), u(t))$, $y(t)=g(t, x(t), u(t))$

Examples: A thermal control system:

We can derive the state-space representation directly from the thermal energy equations.
For volume 1: $\quad m_{1} c_{1} \frac{d T_{1}(t)}{d t}=k_{12}\left(T_{2}(t)-T_{1}(t)\right)$
For volume 2: $\quad m_{2} c_{2} \frac{d T_{2}(t)}{d t}=-k_{12}\left(T_{2}(t)-T_{1}(t)\right) \quad-k_{20}\left(T_{2}(t)-T_{0}(t)\right) \quad+e(t)$

Thermal system:

Suppose that $T_{1}(t)$ is the output of interest and $e(t)$ and $T_{0}(t)$ are both inputs.
Now select state variables which will allow us to put this into the generic state-space matrix equation form.
$\operatorname{Try} x(t)=\left[\begin{array}{l}T_{1}(t) \\ T_{2}(t)\end{array}\right]$.
Then, rearranging gives,

$$
\begin{aligned}
\frac{d T_{1}(t)}{d t} & =\frac{-k_{12}}{m_{1} c_{1}} T_{1}(t)+\frac{k_{12}}{m_{1} c_{1}} T_{2}(t) \\
\frac{d T_{2}(t)}{d t} & =\frac{k_{12}}{m_{2} c_{2}} T_{1}(t)+\frac{-k_{12}-k_{20}}{m_{2} c_{2}} T_{2}(t)+\frac{k_{20}}{m_{2} c_{2}} T_{0}(t)+\frac{1}{m_{2} c_{2}} e(t)
\end{aligned}
$$

So,

$$
A=\left[\begin{array}{c}
\frac{d T_{1}(t)}{d t} \\
\frac{d T_{2}(t)}{d t}
\end{array}\right]=A\left[\begin{array}{l}
T_{1}(t) \\
T_{2}(t)
\end{array}\right]+B\left[\begin{array}{c}
T_{0}(t) \\
e(t)
\end{array}\right], \quad \text { where } \quad A=\left[\begin{array}{cc}
\frac{-k_{12}}{m_{1} c_{1}} & \frac{k_{12}}{m_{1} c_{1}} \\
\frac{k_{12}}{m_{2} c_{2}} & \frac{-k_{12}-k_{20}}{m_{2} c_{2}}
\end{array}\right]
$$

Exercises:

1. What is B ?
2. What is C ?
3. What is D ?
4. What would C and D be if we had both $T_{1}(t)$ and $T_{2}(t)$ as outputs?
5. Calculate the transfer functions from $e(t)$ and $T_{0}(t)$ to $T_{1}(t)$.
\qquad

DC Motor connected to a rotational load

The "back emf" is proportional to motor speed: $V_{e m f}=K \frac{d \theta}{d t}$.
The motor has a series resistance, R, and inductance, L, so $V_{i n}=V_{e m f}+L \frac{d i}{d t}+R i$.
The motor torque is proportional to the motor current: $\tau=K_{\tau} i$.
There is a friction torque, τ_{f} opposing the motor and proportional to its speed: $\tau_{f}=b \frac{d \theta}{d t}$.
The rotational load has inertia J so the torque balance equation is: $J \frac{d^{2} \theta}{d t^{2}}+\tau_{f}=\tau$.
\qquad

DC Motor connected to a rotational load

We are interested in the model from the input voltage, $V_{i n}$, to the rotor angle, θ.

Exercise:

1. How many states are required for this model?
2. Derive a state-space representation.

3 . What are the poles of the system?

