Solving the state-space differential equation (Laplace approach)

Consider a continuous time state-space representation.

$$
\begin{aligned}
\frac{d x(t)}{d t} & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

To begin, look at the zero-input solution

$$
\frac{d x(t)}{d t}=A x(t)
$$

Taking unilateral Laplace transforms gives,

$$
s x(s)-x(0)=A x(s) \quad \text { where } \quad x(0)=x(t) \text { at } t=0 .
$$

This gives,

$$
(s I-A) x(s)=x(0), \quad \text { or } \quad x(s)=(s I-A)^{-1} x(0) .
$$

Taking an inverse Laplace transform gives,

$$
x(t)=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\} x(0)=\Phi(t) x(0)
$$

$\Phi(t)$, is also known as the "State Transition Matrix".

Solving the state-space differential equation (Laplace approach)

Now consider the case where there is an input.

$$
\frac{d x(t)}{d t}=A x(t)+B u(t)
$$

Taking Laplace transforms gives,

$$
s x(s)-x(0)=A x(s)+B u(s)
$$

which means that,

$$
x(s)=(s I-A)^{-1} x(0)+(s I-A)^{-1} B u(s) .
$$

Now the inverse Laplace gives (recall that $\Phi(t)$ is defined as $\left.\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}\right)$,

$$
x(t)=\underbrace{\Phi(t) x(0)}_{\text {zero-input solution }}+\underbrace{\int_{0}^{t} \Phi(t-\tau) B u(\tau) d \tau}_{\text {convolution of } \Phi(t) \text { and } B u(t)}
$$

We can also use this equation for an arbitrary initial time,

$$
x(t)=\Phi\left(t-t_{0}\right) x\left(t_{0}\right)+\int_{t_{0}}^{t} \Phi(t-\tau) B u(\tau) d \tau .
$$

A simple example: A first order system $(\alpha>0)$.

Take the initial conditions to be zero. The differential equation is,

$$
\frac{d y(t)}{d t}+\alpha y(t)=\alpha u(t)
$$

Define the state as, $x(t)=y(t)$, then,

$$
\begin{aligned}
\frac{d x(t)}{d t} & =-\alpha x(t)+\alpha u(t), & \text { or } & \frac{d x(t)}{d t}
\end{aligned}=[-\alpha] x(t)+[\alpha] u(t), ~ 子 r(t)=[1] x(t)+[0] u(t) .
$$

So the state-space representation is: $A=-\alpha, B=\alpha, C=1$ and $D=0$.

State-space systems

Example (continued)
Now look at the State Transition Matrix,

$$
\begin{aligned}
\Phi(t) & =\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s+\alpha}\right\} \\
& =\mathrm{e}^{-\alpha t} \quad \text { (this looks just like the impulse reponse) }
\end{aligned}
$$

So we can calculate,

$$
x(t)=\mathrm{e}^{-\alpha t} x(0)+\int_{0}^{t} \mathrm{e}^{-\alpha(t-\tau)} \alpha u(\tau) d \tau .
$$

Step response: Zero initial condition $(x)=0)$.
As $u(t)=1$ for $t \geq 0$,

$$
\begin{aligned}
y(t)=x(t) & =\mathrm{e}^{-\alpha t} 0+\int_{0}^{t} \mathrm{e}^{-\alpha(t-\tau)} \alpha d \tau,=\mathrm{e}^{-\alpha t} \int_{0}^{t} \mathrm{e}^{\alpha \tau} \alpha d \tau \\
& =\mathrm{e}^{-\alpha t}\left[\left.\mathrm{e}^{\alpha \tau}\right|_{\tau=t}-\left.\mathrm{e}^{\alpha \tau}\right|_{\tau=0}\right]=\mathrm{e}^{-\alpha t}\left(\mathrm{e}^{\alpha t}-1\right)=1-\mathrm{e}^{-\alpha t} .
\end{aligned}
$$

Matrix exponential approach

We will look at an alternative way of deriving $\Phi(t)$ using the "matrix exponential".
Consider the zero-input case, $\frac{d x(t)}{d t}=A x(t)$.
Assume that $x(t)$ is smooth and look at an expansion of $x(t)$ about a point $t=t_{0}$.

$$
x(t)=v_{0}+v_{1}\left(t-t_{0}\right)+v_{2}\left(t-t_{0}\right)^{2}+\cdots
$$

Here the v_{i} are constant vectors of the same size as $x(t)$.
Let's use the differential equation to work out $v_{i}, i=0,1, \ldots$
As the above is supposed to hold for all t, choose $t=t_{0}$ to get,

$$
x\left(t_{0}\right)=v_{0} \quad \text { This gives us the first vector in the expansion. }
$$

To get the next term differentiate the expansion to give,

$$
\frac{d x(t)}{d t}=v_{1}+2 v_{2}\left(t-t_{0}\right)+3 v_{3}\left(t-t_{0}\right)^{2}+\cdots
$$

Again choosing $t=t_{0}$ gives,

$$
\frac{d x\left(t_{0}\right)}{d t}=v_{1} .
$$

But we know that $\frac{d x(t)}{d t}=A x(t)$, so,

$$
v_{1}=A x\left(t_{0}\right) .
$$

Differentiate again to get,

$$
\frac{d^{2} x(t)}{d t^{2}}=2 v_{2}+6 v_{3}\left(t-t_{0}\right)+12 v_{4}\left(t-t_{0}\right)^{2}+\cdots
$$

Choosing $t=t_{0}$ gives, $v_{2}=\frac{1}{2} \frac{d^{2} x\left(t_{0}\right)}{d t^{2}}$.
But $\frac{d^{2} x(t)}{d t^{2}}=\frac{d A x(t)}{d t}=A \frac{d x(t)}{d t}=A^{2} x(t)$, so
$v_{2}=\frac{A^{2}}{2} x\left(t_{0}\right)$.

We can keep differentiating, substituting $t=t_{0}$, and solving for the v_{i} terms.
This eventually gives,

$$
\begin{aligned}
x(t) & =x\left(t_{0}\right)+A\left(t-t_{0}\right) x\left(t_{0}\right)+\frac{A^{2}}{2}\left(t-t_{0}\right)^{2} x\left(t_{0}\right)+\frac{A^{3}}{3!}\left(t-t_{0}\right)^{3} x\left(t_{0}\right)+\cdots \\
& =\underbrace{\left[I+A\left(t-t_{0}\right)+\frac{A^{2}}{2}\left(t-t_{0}\right)^{2}+\frac{A^{3}}{3!}\left(t-t_{0}\right)^{3}+\cdots\right]}_{\text {define this as } \mathrm{e}^{A\left(t-t_{0}\right)}} x\left(t_{0}\right) .
\end{aligned}
$$

If $t_{0}=0$ (as is usually the case) we have,

$$
x(t)=\mathrm{e}^{A t} x(0) \quad \text { and so } \quad \Phi(t)=\mathrm{e}^{A t} .
$$

In Matlab the command expm calculates the matrix exponential.
Caveat emptor. This is not the same as the exponential of the individual elements of a matrix (which is calculated by the Matlab command: exp).

Properties:

$$
\mathrm{e}^{A \times 0}=I, \quad \mathrm{e}^{A(s+t)}=\mathrm{e}^{A s} \mathrm{e}^{A t}, \quad \mathrm{e}^{-A t} \mathrm{e}^{A t}=I, \quad \frac{d \mathrm{e}^{A t}}{d t}=A \mathrm{e}^{A t}
$$

Matrix exponential approach to solving state-space differential equations.

We can begin by "guessing" a solution of the form,

$$
x(t)=\mathrm{e}^{A t} v(t), \quad \text { where } v(t) \text { is a time-varying vector. }
$$

Differentiate this to get,

$$
\begin{aligned}
\frac{d x(t)}{d t} & =A \mathrm{e}^{A t} v(t)+\mathrm{e}^{A t} \frac{d v(t)}{d t} \\
& =A x(t)+B u(t) . \quad \text { (from the differential equation) } \\
& =A \mathrm{e}^{A t} v(t)+B u(t) \quad \text { (by substituting for } x(t) \text {) }
\end{aligned}
$$

and by equating the first \& third lines,

$$
\begin{aligned}
\mathrm{e}^{A t} \frac{d v(t)}{d t} & =B u(t) \\
\frac{d v(t)}{d t} & =\mathrm{e}^{-A t} B u(t)
\end{aligned}
$$

Solve this by integrating to get:

$$
v(t)-v(0)=\int_{0}^{t} \mathrm{e}^{-A \tau} B u(\tau) d \tau
$$

From before,

$$
v(t)-v(0)=\int_{0}^{t} \mathrm{e}^{-A \tau} B u(\tau) d \tau
$$

but,

$$
x(t)=\mathrm{e}^{A t} v(t) \quad \text { so } \quad v(t)=\mathrm{e}^{-A t} x(t) \quad \text { and } \quad v(0)=x(0) .
$$

Substituting these gives,

$$
\mathrm{e}^{-A t} x(t)-x(0)=\int_{0}^{t} \mathrm{e}^{-A \tau} B u(\tau) d \tau
$$

or,

$$
\begin{aligned}
x(t) & =\mathrm{e}^{A t} x(0)+\mathrm{e}^{A t} \int_{0}^{t} \mathrm{e}^{-A \tau} B u(\tau) d \tau \\
& =\mathrm{e}^{A t} x(0)+\int_{0}^{t} \mathrm{e}^{A(t-\tau)} B u(\tau) d \tau
\end{aligned}
$$

This is exactly the same solution as before where $\Phi(t)=\mathrm{e}^{A t}$.

Example:

$$
P(s)=\frac{(s-1)}{(s+1)(s+2)}
$$

This system has a state-space representation:

$$
A=\left[\begin{array}{cc}
-3 & -2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad D=0
$$

The state transition matrix is $\Phi(t)=\mathrm{e}^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}$.
In this example:

$$
\begin{aligned}
\mathrm{e}^{A t} & =\mathcal{L}^{-1}\left\{\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
-3 & -2 \\
1 & 0
\end{array}\right]\right)^{-1}\right\}=\mathcal{L}^{-1}\left\{\left[\begin{array}{cc}
s+3 & 2 \\
-1 & s
\end{array}\right]^{-1}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s(s+3)+2}\left[\begin{array}{cc}
s & -2 \\
1 & s+3
\end{array}\right]\right\} \\
& =\mathcal{L}^{-1}\left\{\left[\begin{array}{ll}
\frac{2}{s+2}+\frac{-1}{s+1} & \frac{2}{s+2}+\frac{-2}{s+1} \\
\frac{-1}{s+2}+\frac{1}{s+1} & \frac{-1}{s+2}+\frac{2}{s+1}
\end{array}\right]\right\}=\left[\begin{array}{cc}
2 \mathrm{e}^{-2 t}-\mathrm{e}^{-t} & 2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-t} \\
-\mathrm{e}^{-2 t}+\mathrm{e}^{-t} & -\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Transfer functions (continuous time)
Assume that $x(0)=0$.

$$
\begin{aligned}
\frac{d x(t)}{d t} & =A x(t)+B u(t), \\
y(t) & =C x(t)+D u(t) .
\end{aligned}
$$

Turn this into a transfer function simply by taking Laplace transforms and solving for $y(s) / u(s)$.

Doing this gives,

$$
s x(t)=A x(s)+B u(s),
$$

which implies that,

$$
x(s)=(s I-A)^{-1} B u(s) .
$$

We also have,

$$
y(s)=C x(s)+D u(s)
$$

and substituting for $x(s)$ gives,

$$
y(s)=\left[C(s I-A)^{-1} B+D\right] u(s) .
$$

So the transfer function is:

$$
\frac{y(s)}{u(s)}=P(s)=C(s I-A)^{-1} B+D .
$$

Example: (trivial)

$$
\begin{aligned}
& A=-\alpha, \quad B=\alpha, \quad C=1, \quad D=0 . \\
& P(s)=C(s I-A)^{-1} B+D=1(s-(-\alpha))^{-1} \alpha+0 \quad=\quad \frac{\alpha}{s+\alpha} .
\end{aligned}
$$

Discrete time case:

Perform the same operations with \mathcal{Z}-transforms to get,

$$
P(z)=C(z I-A)^{-1} B+D
$$

Example: (revisted)

$$
P(s)=\frac{(s-1)}{(s+1)(s+2)} .
$$

This system has a state-space representation:

$$
A=\left[\begin{array}{cc}
-3 & -2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad D=0
$$

From before we have,

$$
(s I-A)^{-1}=\frac{1}{s(s+3)+2}\left[\begin{array}{cc}
s & -2 \\
1 & s+3
\end{array}\right],
$$

so,

$$
\begin{aligned}
C(s I-A)^{-1} B+D & =\frac{1}{s(s+3)+2}\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
s & -2 \\
1 & s+3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+0 \\
& =\frac{1}{s(s+3)+2}\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
s \\
1
\end{array}\right] \\
& =\frac{s-1}{s^{2}+3 s+2} .
\end{aligned}
$$

Poles and zeros

If a system, $P(s)$, has a pole at $s=p_{i}$, then its partial fraction expansion is,
$P(s)=\frac{a(s)}{b(s)}=\frac{\left(s-z_{1}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{i}\right) \ldots\left(s-p_{n}\right)}=\frac{E_{1}}{\left(s-p_{1}\right)}+\cdots+\frac{E_{i}}{\left(s-p_{i}\right)}+\cdots+\frac{E_{n}}{\left(s-p_{n}\right)}$.
For the moment assume that p_{i} is not repeated.
The impulse response will be of the form,

$$
p(t)=E_{1} \mathrm{e}^{p_{1} t}+\cdots+E_{i} \mathrm{e}^{p_{i} t}+\cdots+E_{n} \mathrm{e}^{p_{n} t} .
$$

The zero-input solutions of the corresponding differential equation will have terms of the form,

$$
y(t)=k_{i} \mathrm{e}^{p_{i} t}+\ldots
$$

Look at this idea from a state-space point of view.

State-space point of view:

Consider the zero-input case, $\frac{d x(t)}{d t}=A x(t)$, and look at solutions of the form,

$$
x(t)=\mathrm{e}^{p_{i} t} x(0) .
$$

Differentiating this gives,

$$
\frac{d x(t)}{d t}=p_{i} \mathrm{e}^{p_{i} t} x_{0}=p_{i} x(t) .
$$

As $\frac{d x(t)}{d t}=A x(t)$, we have,

$$
A x(t)=p_{i} x(t),
$$

and taking $t=0$ gives,

$$
A x(0)=p_{i} x(0) \longleftarrow \quad \text { This is an eigenvalue equation. }
$$

The eigenvalues of A are the poles of $P(s)$.
The poles (eigenvalues) are also called "natural frequencies" or "modes" of $P(s)$.
\qquad

Poles and zeros
Example: (yet again)

$$
P(s)=\frac{(s-1)}{(s+1)(s+2)} .
$$

This system has a state-space representation:

$$
A=\left[\begin{array}{cc}
-3 & -2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad D=0
$$

We will sometimes abbreviate this to,

$$
P(s)=\left[\begin{array}{cc|c}
-3 & -2 & 1 \\
1 & 0 & 0 \\
\hline 1 & -1 & 0
\end{array}\right] . \quad \text { Note that the dimensions always make this possible. }
$$

Eigenvalue equation:

The eigenvalues of A satisfy,

$$
\operatorname{det}(\lambda I-A)=0 .
$$

But here we see that this is simply the roots of the denominator,

$$
\operatorname{det}\left[\begin{array}{cc}
\lambda+3 & 2 \\
-1 & \lambda
\end{array}\right]=\lambda(\lambda+3)+2=\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)=0
$$

Eigenvalues and similarity transforms

We can "diagonalize" most matrices by a transformation,

$$
A=V \Lambda V^{-1}, \text { where } \Lambda=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right] \quad \text { is diagonal. }
$$

In the previous example,

The Matlab command eig does this eigenvalue decomposition.

Exercise:

1. Calculate this decomposition by hand.

Similarity transforms

Define a new state, $\xi(t)$, by the linear invertible transform,

$$
\xi(t)=V^{-1} x(t) \quad \text { or, equivalently, } \quad x(t)=V \xi(t) .
$$

Recall the usual state-space equations,

$$
\begin{aligned}
\frac{d x(t)}{d t} & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

and substitute for $x(t)$.

$$
\begin{aligned}
V \frac{d \xi(t)}{d t} & =A V \xi(t)+B u(t), & \text { or } & \frac{d \xi(t)}{d t}
\end{aligned}=V^{-1} A V \xi(t)+V^{-1} B u(t),
$$

Substituting $V^{-1} A V=\Lambda$, gives,

$$
\begin{aligned}
\frac{d \xi(t)}{d t} & =\Lambda \xi(t) \quad+V^{-1} B u(t) \\
y(t) & =C V \xi(t) \quad+D u(t)
\end{aligned}
$$

This is a new (and completely equivalent) state-space description.

Similarity transforms

Any invertible $n \times n$ matrix, V, can be used to transform a matrix,

$$
\hat{A}=V A V^{-1}
$$

The matrix, \hat{A} is "similar" to (has the same eigenvalues as) A.
This is called a "similarity transform".

Similarity transformed state-space representations

By defining a new state, $\xi(t)=V^{-1} x(t)$,
$\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]=\left[\begin{array}{c|c}V^{-1} A V & V^{-1} B \\ \hline C V & D\end{array}\right]$.

So there are obviously an infinite number of equivalent state-space representations.

Exercises:

1. Show that the eigenvalues of A are unchanged by a similarity transform.
2. Show that the transfer function is unchanged by a similarity transform of A.

Zeros

If $P(s)=\frac{y(s)}{u(s)}$ has a zero at $s=s_{0}$, then for all inputs $u\left(s_{0}\right)$ the output $y\left(s_{0}\right)=0$.
This is equivalent to,

$$
0=C\left(s_{0} I-A\right)^{-1} B+D
$$

Using a state-space Laplace domain form (at $s=s_{0}$) we have,

$$
\begin{aligned}
s_{0} x\left(s_{0}\right) & =A x\left(s_{0}\right)+B u\left(s_{0}\right) \\
0 & =C x\left(s_{0}\right)+D u\left(s_{0}\right)
\end{aligned}
$$

This can be rearranged into matrix form,

$$
\left[\begin{array}{cc}
\left(s_{0} I-A\right) & -B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x\left(s_{0}\right) \\
u\left(s_{0}\right)
\end{array}\right]=0
$$

This means that the matrix,

$$
\left[\begin{array}{cc}
\left(s_{0} I-A\right) & -B \\
C & D
\end{array}\right] \quad \text { is singular, or equivalently } \quad \operatorname{det}\left[\begin{array}{cc}
\left(s_{0} I-A\right) & -B \\
C & D
\end{array}\right]=0
$$

Summary: Continuous time

Poles are given by: $\operatorname{det}(s I-A)=0$
Zeros are given by: $\operatorname{det}\left[\begin{array}{cc}(s I-A) & -B \\ C & D\end{array}\right]=0$.

Summary: Discrete time

Poles are given by: $\operatorname{det}(z I-A)=0$
Zeros are given by: $\operatorname{det}\left[\begin{array}{cc}(z I-A) & -B \\ C & D\end{array}\right]=0$.

