Solving the state-space differential equation (Laplace approach)

Consider a continuous time state-space representation.

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t).$$

To begin, look at the zero-input solution

$$\frac{dx(t)}{dt} = A x(t).$$

Taking unilateral Laplace transforms gives,

sx(s) - x(0) = Ax(s) where x(0) = x(t) at t = 0.

This gives,

$$(sI - A)x(s) = x(0),$$
 or $x(s) = (sI - A)^{-1}x(0)$

Taking an inverse Laplace transform gives,

$$x(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\} x(0) = \Phi(t)x(0).$$

 $\Phi(t)$, is also known as the "State Transition Matrix".

Roy Smith: ECE 147
b $\boldsymbol{9}{:}$ 1

State-space systems

Solving the state-space differential equation (Laplace approach)

Now consider the case where there is an input.

$$\frac{dx(t)}{dt} = A x(t) + B u(t)$$

Taking Laplace transforms gives,

$$sx(s) - x(0) = Ax(s) + Bu(s),$$

which means that,

$$x(s) = (sI - A)^{-1} x(0) + (sI - A)^{-1} B u(s).$$

Now the inverse Laplace gives (recall that $\Phi(t)$ is defined as $\mathcal{L}^{-1}\{(sI-A)^{-1}\}$),

$$x(t) = \underbrace{\Phi(t) x(0)}_{0} + \underbrace{\int_{0}^{t} \Phi(t-\tau) B u(\tau) d\tau}_{0}.$$

zero-input solution convolution of $\Phi(t)$ and Bu(t)

We can also use this equation for an arbitrary initial time,

$$x(t) = \Phi(t - t_0) x(t_0) + \int_{t_0}^t \Phi(t - \tau) B u(\tau) d\tau.$$

A simple example: A first order system ($\alpha > 0$).

$$y(s)$$
 $u(s)$ $u(s)$

Take the initial conditions to be zero. The differential equation is,

$$\frac{dy(t)}{dt} + \alpha y(t) = \alpha u(t).$$

Define the state as, x(t) = y(t), then,

$$\begin{array}{rcl} \displaystyle \frac{dx(t)}{dt} &=& -\alpha \, x(t) \ + \ \alpha u(t), & \quad \mbox{or} & \quad \displaystyle \frac{dx(t)}{dt} \ = \ \left[-\alpha \right] x(t) \ + \ \left[\alpha \right] u(t), \\ y(t) \ = \ x(t) & \quad \mbox{or} & \quad y(t) \ = \ \left[1 \right] x(t) \ + \ \left[0 \right] u(t). \end{array}$$

So the state-space representation is: $A = -\alpha$, $B = \alpha$, C = 1 and D = 0.

Roy Smith: ECE 147b 9: 3

State-space systems

Example (continued)

Now look at the State Transition Matrix,

$$\Phi(t) = \mathcal{L}^{-1} \{ (sI - A)^{-1} \}$$

= $\mathcal{L}^{-1} \{ \frac{1}{s + \alpha} \}$
= $e^{-\alpha t}$ (this looks just like the impulse reponse)

So we can calculate ,

$$x(t) = e^{-\alpha t} x(0) + \int_0^t e^{-\alpha(t-\tau)} \alpha u(\tau) d\tau.$$

Step response: Zero initial condition (x(0) = 0).

As u(t) = 1 for $t \ge 0$,

$$y(t) = x(t) = e^{-\alpha t} 0 + \int_0^t e^{-\alpha(t-\tau)} \alpha \, d\tau, = e^{-\alpha t} \int_0^t e^{\alpha \tau} \alpha \, d\tau,$$

= $e^{-\alpha t} [e^{\alpha \tau} |_{\tau=t} - e^{\alpha \tau} |_{\tau=0}] = e^{-\alpha t} (e^{\alpha t} - 1) = 1 - e^{-\alpha t}.$

Matrix exponential approach

We will look at an alternative way of deriving $\Phi(t)$ using the "matrix exponential".

Consider the zero-input case, $\frac{dx(t)}{dt} = A x(t)$.

Assume that x(t) is smooth and look at an expansion of x(t) about a point $t = t_0$.

 $x(t) = v_0 + v_1(t - t_0) + v_2(t - t_0)^2 + \cdots$

Here the v_i are constant vectors of the same size as x(t).

Let's use the differential equation to work out v_i , i = 0, 1, ...

As the above is supposed to hold for all t, choose $t = t_0$ to get,

 $x(t_0) = v_0$ This gives us the first vector in the expansion.

Roy Smith: ECE 147b 9: 5

Matrix exponentials

To get the next term differentiate the expansion to give,

$$\frac{dx(t)}{dt} = v_1 + 2v_2(t-t_0) + 3v_3(t-t_0)^2 + \cdots$$

Again choosing $t = t_0$ gives,

$$\frac{dx(t_0)}{dt} = v_1.$$

But we know that $\frac{dx(t)}{dt} = A x(t)$, so, $v_1 = A x(t_0)$.

Differentiate again to get,

 $v_2 = \frac{A^2}{2} x(t_0).$

$$\frac{d^2 x(t)}{dt^2} = 2v_2 + 6v_3(t - t_0) + 12v_4(t - t_0)^2 +$$

Choosing $t = t_0$ gives, $v_2 = \frac{1}{2} \frac{d^2 x(t_0)}{dt^2}$.
But $\frac{d^2 x(t)}{dt^2} = \frac{dAx(t)}{dt} = A \frac{dx(t)}{dt} = A^2 x(t)$, so

We can keep differentiating, substituting $t = t_0$, and solving for the v_i terms.

This eventually gives,

$$\begin{aligned} x(t) &= x(t_0) + A(t - t_0) x(t_0) + \frac{A^2}{2} (t - t_0)^2 x(t_0) + \frac{A^3}{3!} (t - t_0)^3 x(t_0) + \cdots \\ &= \underbrace{\left[I + A(t - t_0) + \frac{A^2}{2} (t - t_0)^2 + \frac{A^3}{3!} (t - t_0)^3 + \cdots\right]}_{\text{define this as } e^{A(t - t_0)}} x(t_0). \end{aligned}$$

If $t_0 = 0$ (as is usually the case) we have,

 $x(t) = e^{At} x(0)$ and so $\Phi(t) = e^{At}$.

In MATLAB the command expm calculates the matrix exponential.

Caveat emptor. This is not the same as the exponential of the individual elements of a matrix (which is calculated by the MATLAB command: exp).

Properties:

$$e^{A \times 0} = I$$
, $e^{A(s+t)} = e^{As}e^{At}$, $e^{-At}e^{At} = I$, $\frac{d e^{At}}{dt} = Ae^{At}$

Roy Smith: ECE 147b 9: 7

Solving state-space differential equations

Matrix exponential approach to solving state-space differential equations.

We can begin by "guessing" a solution of the form,

 $x(t) = e^{At} v(t)$, where v(t) is a time-varying vector.

Differentiate this to get,

$$\frac{dx(t)}{dt} = Ae^{At}v(t) + e^{At}\frac{dv(t)}{dt}$$

= $Ax(t) + Bu(t)$. (from the differential equation)
= $Ae^{At}v(t) + Bu(t)$ (by substituting for $x(t)$)

and by equating the first & third lines,

$$e^{At} \frac{dv(t)}{dt} = B u(t)$$
$$\frac{dv(t)}{dt} = e^{-At} B u(t).$$

Solve this by integrating to get:

$$v(t) - v(0) = \int_0^t e^{-A\tau} Bu(\tau) d\tau.$$

From before,

$$v(t) - v(0) = \int_0^t e^{-A\tau} Bu(\tau) d\tau.$$

but,

$$x(t) = e^{At} v(t)$$
 so $v(t) = e^{-At} x(t)$ and $v(0) = x(0)$.

Substituting these gives,

$$e^{-At} x(t) - x(0) = \int_0^t e^{-A\tau} Bu(\tau) d\tau.$$

or,

$$\begin{aligned} x(t) &= e^{At} x(0) + e^{At} \int_0^t e^{-A\tau} Bu(\tau) \, d\tau, \\ &= e^{At} x(0) + \int_0^t e^{A(t-\tau)} Bu(\tau) \, d\tau, \end{aligned}$$

This is exactly the same solution as before where $\Phi(t) = e^{At}$.

Roy Smith: ECE 147b **9**: 9

State transition matrix

Example:

$$P(s) = \frac{(s-1)}{(s+1)(s+2)}.$$

This system has a state-space representation:

$$A = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \end{bmatrix}, \quad D = 0.$$

The state transition matrix is $\Phi(t) = e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}.$

In this example:

$$e^{At} = \mathcal{L}^{-1} \left\{ \left(\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} \right)^{-1} \right\} = \mathcal{L}^{-1} \left\{ \begin{bmatrix} s+3 & 2 \\ -1 & s \end{bmatrix}^{-1} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s(s+3)+2} \begin{bmatrix} s & -2 \\ 1 & s+3 \end{bmatrix} \right\}$$
$$= \mathcal{L}^{-1} \left\{ \begin{bmatrix} \frac{2}{s+2} + \frac{-1}{s+1} & \frac{2}{s+2} + \frac{-2}{s+1} \\ \frac{-1}{s+2} + \frac{1}{s+1} & \frac{-1}{s+2} + \frac{2}{s+1} \end{bmatrix} \right\} = \begin{bmatrix} 2e^{-2t} - e^{-t} & 2e^{-2t} - 2e^{-t} \\ -e^{-2t} + e^{-t} & -e^{-2t} + 2e^{-t} \end{bmatrix}$$

Transfer functions (continuous time)

Assume that x(0) = 0.

$$\begin{array}{rcl} \frac{dx(t)}{dt} &=& A\,x(t)\,+\,B\,u(t),\\ y(t) &=& C\,x(t)\,+\,D\,u(t). \end{array}$$

Turn this into a transfer function simply by taking Laplace transforms and solving for y(s)/u(s).

Doing this gives,

s x(t) = A x(s) + B u(s),

which implies that,

$$x(s) = (sI - A)^{-1}Bu(s).$$

Roy Smith: ECE 147
b $\boldsymbol{9}{:}$ 11

Transfer functions

We also have,

$$y(s) = C x(s) + D u(s).$$

and substituting for x(s) gives,

$$y(s) = [C(sI - A)^{-1}B + D] u(s).$$

So the transfer function is:

$$\frac{y(s)}{u(s)} = P(s) = C(sI - A)^{-1}B + D.$$

Example: (trivial)

$$A = -\alpha, \quad B = \alpha, \quad C = 1, \quad D = 0.$$

$$P(s) = C(sI - A)^{-1}B + D = 1(s - (-\alpha))^{-1}\alpha + 0 = \frac{\alpha}{s + \alpha}$$

Discrete time case:

Perform the same operations with $\mathcal Z\text{-}\mathrm{transforms}$ to get,

$$P(z) = C(zI - A)^{-1}B + D.$$

Example: (revisted)

$$P(s) = \frac{(s-1)}{(s+1)(s+2)}.$$

This system has a state-space representation:

$$A = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \end{bmatrix}, \quad D = 0.$$

From before we have,

$$(sI - A)^{-1} = \frac{1}{s(s+3)+2} \begin{bmatrix} s & -2\\ 1 & s+3 \end{bmatrix},$$

so,

$$C(sI - A)^{-1}B + D = \frac{1}{s(s+3)+2} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} s & -2\\ 1 & s+3 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} + 0$$
$$= \frac{1}{s(s+3)+2} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} s\\ 1 \end{bmatrix}$$
$$= \frac{s-1}{s^2+3s+2}.$$

Roy Smith: ECE 147
b ${\bf 9}{:}$ 13

Poles and zeros

Poles and zeros

If a system, P(s), has a pole at $s = p_i$, then its partial fraction expansion is,

$$P(s) = \frac{a(s)}{b(s)} = \frac{(s-z_1)\dots(s-z_m)}{(s-p_1)\dots(s-p_i)\dots(s-p_n)} = \frac{E_1}{(s-p_1)} + \dots + \frac{E_i}{(s-p_i)} + \dots + \frac{E_n}{(s-p_n)}$$

For the moment assume that p_i is not repeated.

The impulse response will be of the form,

 $p(t) = E_1 e^{p_1 t} + \dots + E_i e^{p_i t} + \dots + E_n e^{p_n t}.$

The zero-input solutions of the corresponding differential equation will have terms of the form,

 $y(t) = k_i e^{p_i t} + \dots$

Look at this idea from a state-space point of view.

State-space point of view:

Consider the zero-input case, $\frac{dx(t)}{dt} = A x(t)$, and look at solutions of the form,

$$x(t) = e^{p_i t} x(0).$$

Differentiating this gives,

$$\frac{dx(t)}{dt} = p_i e^{p_i t} x_0 = p_i x(t).$$

As $\frac{dx(t)}{dt} = A x(t)$, we have,
 $A x(t) = p_i x(t)$,

and taking t = 0 gives,

 $A x(0) = p_i x(0)$ mtext{ — This is an eigenvalue equation.}

The eigenvalues of A are the poles of P(s).

The poles (eigenvalues) are also called "natural frequencies" or "modes" of P(s).

Roy Smith: ECE 147b
 $\boldsymbol{9}{:}$ 15

Poles and zeros

Example: (yet again)

$$P(s) = \frac{(s-1)}{(s+1)(s+2)}.$$

This system has a state-space representation:

$$A = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \end{bmatrix}, \quad D = 0.$$

We will sometimes abbreviate this to,

$$P(s) = \begin{bmatrix} -3 & -2 & | & 1 \\ 1 & 0 & 0 \\ \hline 1 & -1 & | & 0 \end{bmatrix}.$$
 Note that the dimensions always make this possible.

Eigenvalue equation:

The eigenvalues of A satisfy,

 $\det(\lambda I - A) = 0.$

But here we see that this is simply the roots of the denominator,

$$\det \begin{bmatrix} \lambda+3 & 2\\ -1 & \lambda \end{bmatrix} = \lambda(\lambda+3) + 2 = \lambda^2 + 3\lambda + 2 = (\lambda+1)(\lambda+2) = 0.$$

Eigenvalues and similarity transforms

We can "diagonalize" most matrices by a transformation,

$$A = V\Lambda V^{-1}$$
, where $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$ is diagonal.

In the previous example,

$$\underbrace{\begin{bmatrix} -3 & -2\\ 1 & 0 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} -2 & \sqrt{2}/2\\ 1 & -\sqrt{2}/2 \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} -2 & 0\\ 0 & -1 \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} -\sqrt{2}/2 & -\sqrt{2}/2\\ -1 & -2 \end{bmatrix}}_{V^{-1}}$$

The MATLAB command eig does this eigenvalue decomposition.

Exercise:

1. Calculate this decomposition by hand.

Roy Smith: ECE 147
b $\boldsymbol{9}{:}$ 17

Similarity transforms

Similarity transforms

Define a new state, $\xi(t)$, by the linear invertible transform,

 $\xi(t) = V^{-1} x(t)$ or, equivalently, $x(t) = V \xi(t)$.

Recall the usual state-space equations,

$$\begin{aligned} \frac{dx(t)}{dt} &= A x(t) + B u(t), \\ y(t) &= C x(t) + D u(t), \end{aligned}$$

and substitute for x(t).

$$\begin{array}{rcl} V \frac{d\xi(t)}{dt} &=& AV\,\xi(t) \;+\; B\,u(t), & & \\ y(t) &=& CV\,\xi(t) \;+\; D\,u(t), & & \\ \end{array} \text{ or } & \begin{array}{rcl} \frac{d\xi(t)}{dt} \;=\; V^{-1}\,A\,V\,\xi(t) \;+\; V^{-1}\,B\,u(t), \\ y(t) \;=\; C\,V\,\xi(t) \;+\; D\,u(t). \end{array}$$

Substituting $V^{-1}AV = \Lambda$, gives,

$$\begin{aligned} \frac{d\xi(t)}{dt} &= \Lambda \,\xi(t) &+ \, V^{-1} \, B \, u(t), \\ y(t) &= \, C \, V \, \xi(t) \,\, + \,\, D \, u(t). \end{aligned}$$

This is a new (and completely equivalent) state-space description.

Similarity transforms

Any invertible $n \times n$ matrix, V, can be used to transform a matrix,

 $\hat{A} = V A V^{-1}.$

The matrix, \hat{A} is "similar" to (has the same eigenvalues as) A.

This is called a "similarity transform".

Similarity transformed state-space representations

By defining a new state, $\xi(t) = V^{-1} x(t)$,

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} V^{-1}AV & V^{-1}B \\ \hline CV & D \end{bmatrix}.$$

So there are obviously an infinite number of equivalent state-space representations.

Exercises:

- 1. Show that the eigenvalues of A are unchanged by a similarity transform.
- 2. Show that the transfer function is unchanged by a similarity transform of A.

Roy Smith: ECE 147b 9: 19

Poles and zeros

Zeros

If $P(s) = \frac{y(s)}{u(s)}$ has a zero at $s = s_0$, then for all inputs $u(s_0)$ the output $y(s_0) = 0$.

This is equivalent to,

 $0 = C(s_0 I - A)^{-1}B + D$

Using a state-space Laplace domain form (at $s = s_0$) we have,

$$s_0 x(s_0) = A x(s_0) + B u(s_0) 0 = C x(s_0) + D u(s_0)$$

This can be rearranged into matrix form,

$$\begin{bmatrix} (s_0I - A) & -B \\ C & D \end{bmatrix} \begin{bmatrix} x(s_0) \\ u(s_0) \end{bmatrix} = 0$$

This means that the matrix,

$$\begin{bmatrix} (s_0I - A) & -B \\ C & D \end{bmatrix} \quad \text{is singular, or equivalently} \quad \det \begin{bmatrix} (s_0I - A) & -B \\ C & D \end{bmatrix} = 0$$

Summary: Continuous time

 $\begin{array}{ll} \mbox{Poles are given by:} & \det(sI-A)=0\\ \\ \mbox{Zeros are given by:} & \det \begin{bmatrix} (sI-A) & -B\\ C & D \end{bmatrix} = 0. \end{array}$

Summary: Discrete time

Poles are given by: det(zI - A) = 0

Zeros are given by: det $\begin{bmatrix} (zI - A) & -B \\ C & D \end{bmatrix} = 0.$

Roy Smith: ECE 147
b $\boldsymbol{9}{:}$ 21