
ECE151 – Lecture 10 1

ECE151 – Lecture 10

Chapter 6
Consistency and Replication

ECE151 – Lecture 10 2

(b)

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Summary of Consistency Models

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

ECE151 – Lecture 10 3

Client-Centric Consistency Models
Goal: Show how we can perhaps avoid systemwide consistency,

by concentrating on what specific clients want,
instead of what should be maintained by servers.

Background: Most large-scale distributed systems (i.e., databases) apply
replication for scalability, but can support only weak consistency:

DNS: Updates are propagated slowly, and inserts may not be
immediately visible.

NEWS: Articles and reactions are pushed and pulled throughout the
Internet, such that reactions might be seen before postings.

Lotus Notes: Geographically dispersed servers replicate documents,
but make no attempt to keep (concurrent) updates mutually consistent.

WWW: Caches all over the place, but there need be no guarantee that
you are reading the most recent version of a page.

ECE151 – Lecture 10 4

Consistency for Mobile Users
Example: Consider a distributed database to which you have access

through your notebook. Assume your notebook acts as a front end
to the database.

 At location A you access the database doing reads and updates.
 At location B you continue your work, but unless you access the same

server as the one at location A, you may detect inconsistencies:
– your updates at A may not have yet been propagated to B
– you may be reading newer entries than the ones available at A
– your updates at B may eventually conflict with those at A

Note: The only thing you really want is that the entries you updated
and/or read at A, are in B the way you left them in A. In that case,
the database will appear to be consistent to you.

ECE151 – Lecture 10 5

Eventual Consistency
The principle of a mobile user accessing

different replicas of a distributed database.

ECE151 – Lecture 10 6

Monotonic Reads

Notation: WS(xi[t]) is the set of write operations (at Li) that lead to version
xi of x (at time t); WS(xi[t1];xj[t2]) indicates that it is known that WS(xi[t1])
is part of WS(xj[t2]). Note: Parameter t is omitted from figures

The read operations performed by a single process P
at two different local copies of the same data store.

a) A monotonic-read consistent data store
b) A data store that does not provide monotonic reads.

If a process reads the value of a data item x, any successive read operation
on x by that process will always return that same or a more recent value.

ECE151 – Lecture 10 7

Monotonic Reads
Example: Automatically reading your personal

calendar updates from different servers.
Monotonic Reads guarantees that the user sees
all updates, no matter from which server the
automatic reading takes place.

Example: Reading (not modifying) incoming mail
while you are on the move.
Each time you connect to a different e-mail server,
that server fetches (at least) all the updates
from the server you previously visited.

ECE151 – Lecture 10 8

Monotonic Writes

The write operations performed by a single process P
at two different local copies of the same data store

a) A monotonic-write consistent data store.
b) A data store that does not provide monotonic-write

consistency.

A write operation by a process on a data item x is completed
before any successive write operation on x by the same process.

ECE151 – Lecture 10 9

Monotonic Writes
Example: Updating a program at server S2, and ensuring that

all components on which compilation and linking depends,
are also placed at S2.

Example: Maintaining versions of replicated files in the
correct order everywhere (propagate the previous version
to the server where the newest version is installed).

ECE151 – Lecture 10 10

Read Your Writes

a) A data store that provides read-your-writes consistency.
b) A data store that does not.

The effect of a write operation by a process on data item x,
will always be seen by a successive read operation on x by the
same process.

ECE151 – Lecture 10 11

Read Your Writes
Example: Updating your Web page and guaranteeing

that your Web browser shows the newest version
instead of its cached copy.

ECE151 – Lecture 10 12

Writes Follow Reads

a) A writes-follow-reads consistent data store
b) A data store that does not provide writes-follow-reads

consistency

A write operation by a process on a data item x, following a
previous read operation on x by the same process, is guaranteed to
take place on the same or a more recent value of x that was read.

ECE151 – Lecture 10 13

Writes Follow Reads
Example: See reactions to posted articles only if you

have the original posting (a read “pulls in” the
corresponding write operation).

ECE151 – Lecture 10 14

Replica Placement
 Model: We consider objects (and don’t worry whether they

contain just data or code, or both)
 Distinguish different processes: A process is capable of

hosting a replica of an object or data:
 Permanent replicas: Process/machine always having a

replica
 Server-initiated replica: Process that can dynamically host

a replica on request of another server in the data store
 Client-initiated replica: Process that can dynamically host a

replica on request of a client (client cache)

ECE151 – Lecture 10 15

Replica Placement

The logical organization of different kinds of
copies of a data store into three concentric rings.

ECE151 – Lecture 10 16

Server-Initiated Replicas
Keep track of access counts per file, aggregated by considering server

closest to requesting clients
 Number of accesses drops below threshold D drop file
 Number of accesses exceeds threshold R replicate file
 Number of access between D and R migrate file

ECE151 – Lecture 10 17

Update Propagation
 Propagate only notification/invalidation of update

(often used for caches)
 Transfer data from one copy to another

(distributed databases)
 Propagate the update operation to other copies

(also called active replication)
Observation: No single approach is the best,

but depends highly on available bandwidth and
read-to-write ratio at replicas.

ECE151 – Lecture 10 18

Pull versus Push Protocols

A comparison between push-based and pull-based protocols
in the case of multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)Response time at
client

Poll and updateUpdate (and possibly fetch update later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

Pushing updates: server-initiated approach, in which update
is propagated regardless whether target asked for it.
Pulling updates: client-initiated approach, in which client
requests that the update be sent to it.

ECE151 – Lecture 10 19

Update Propagation
Observation: We can dynamically switch between pulling

and pushing using leases: A contract in which the server
promises to push updates to the client until the lease
expires.

Issue: Make lease expiration time dependent on system’s
behavior (adaptive leases):

 Age-based leases: An object that hasn’t changed for a long
time, will not change in the near future, so provide a long-
lasting lease

 Renewal-frequency based leases: The more often a client
requests a specific object, the longer the expiration time for
that client (for that object) will be

 State-based leases: The more loaded a server is, the shorter
the expiration times become

ECE151 – Lecture 10 20

Epidemic Algorithms
 General background
 Update models
 Removing objects

ECE151 – Lecture 10 21

Principles
Basic idea: Assume there are no write–write conflicts:
 Update operations are initially performed at one or only a

few replicas
 A replica passes its updated state to a limited number of

neighbors
 Update propagation is lazy, i.e., not immediate
 Eventually, each update should reach every replica
Anti-entropy: Each replica regularly chooses another replica

at random, and exchanges state differences, leading to
identical states at both afterwards

Gossiping: A replica which has just been updated (i.e., has
been contaminated), tells a number of other replicas about
its update (contaminating them as well).

ECE151 – Lecture 10 22

System Model
We consider a collection servers,

each storing a number of objects
 Each object O has a primary server

at which updates for O are always initiated
(avoiding write-write conflicts)

 An update of object O at server S is timestamped
The value of O at S is denoted VAL(O, S)

 T(O,S) denotes the timestamp
of the value of object O at server S

ECE151 – Lecture 10 23

Anti-Entropy
Basic issue: When a server S contacts another server S* to exchange

state information, three different strategies can be followed:
Push: S only forwards all its updates to S* :

if T(O,S*) < T(O,S) then VAL(O,S*) <= VAL(O,S)
Pull: S only fetches updates from S :

if T(O,S*) > T(O,S) then VAL(O,S*) <= VAL(O,S)
Push-Pull: S and S exchange their updates by pushing and pulling values

Observation: if each server periodically randomly chooses another
server for exchanging updates, an update is propagated in O(log(N))
time units.

Question: Why is pushing alone not efficient when many servers have
already been updated?

ECE151 – Lecture 10 24

Basic model: A server S having an update to report, contacts
other servers. If a server is contacted to which the update
has already propagated, S stops contacting other servers
with probability 1 k.

If s is the fraction of ignorant servers (i.e., which are unaware
of the update), it can be shown that with many servers:

s = e-(k+1)(1-s)

Observation: If we really have to ensure
that all servers are eventually updated,
gossiping alone is not enough

Gossiping

0.00255
0.00704
0.02003
0.06002
0.20001

sk

ECE151 – Lecture 10 25

Deleting Values
Fundamental problem: We cannot remove an old value from a server

and expect the removal to propagate.
Instead, mere removal will be undone in due time
using epidemic algorithms

Solution: Removal has to be registered as a special update
by inserting a death certificate

Next problem: When to remove a death certificate (it is not allowed to
stay for ever):

 Run a global algorithm to detect whether the removal is known
everywhere, and then collect the death certificates (looks like garbage
collection)

 Assume death certificates propagate in finite time, and associate a
maximum lifetime for a certificate (at risk of not reaching all servers)

Note: it is necessary that a removal actually reaches all servers.
Question: What’s the scalability problem here?

ECE151 – Lecture 10 26

Consistency Protocols
Consistency protocol: describes the implementation

of a specific consistency model.
We will concentrate only on sequential consistency.
 Primary-based protocols
 Replicated-write protocols
 Cache-coherence protocols

ECE151 – Lecture 10 27

Primary-Based Remote-Write Protocols
Primary-based remote-write protocol with a fixed server

to which all read and write operations are forwarded.
 Used in traditional client-server systems that do not

support replication.

ECE151 – Lecture 10 28

Primary-Based Remote-Write Protocols

Traditionally applied in distributed
databases and file systems that require
a high degree of fault tolerance.

Replicas are often placed on same LAN.

ECE151 – Lecture 10 29

Primary-Based Local-Write Protocols
Primary-based local-write protocol in which a single copy is

migrated between processes.

Establishes only a fully distributed,
nonreplicated data store. Useful when
writes are expected to come in series
from the same client (e.g., mobile
computing without replication)

ECE151 – Lecture 10 30

Primary-Based Local-Write Protocols
Primary-backup protocol in which the primary migrates

to the process wanting to perform an update.

Distributed shared memory systems, but
also mobile computing in disconnected
mode (ship all relevant files to user before
disconnecting, and update later on).

ECE151 – Lecture 10 31

Active Replication

The problem of replicated invocations.

Updates are forwarded to multiple
replicas, where they are carried out.
There are some problems to deal with
in the face of replicated invocations:

ECE151 – Lecture 10 32

Active Replication
a) Forwarding an invocation request from a replicated

object.
b) Returning a reply to a replicated object.

Replicated invocations: Assign a coordinator
on each side (client and server),
which ensure that only one invocation, and
one reply, is sent:

ECE151 – Lecture 10 33

Quorum-Based Replicated-Write Protocols

Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A incorrect choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

Quorum-based protocols: Ensure that each operation is
carried out in such a way that a majority vote is established:
Distinguish read quorum and write quorum:

ECE151 – Lecture 10 34

Casually-Consistent Lazy Replication
Basic model: Number of replica servers jointly implement

a causal-consistent data store. Clients normally talk to
front ends which maintain data to ensure causal consistency.

ECE151 – Lecture 10 35

Lazy Replication: Vector Timestamps
VAL(i): VAL(i)[i] denotes the total number of write

operations sent directly by a front end (client). VAL(i)[j]
denotes the number of updates sent from replica #j.

WORK(i): WORK(i)[i] total number of write operations
directly from front ends, including the pending ones.
WORK(i)[j] is total number of updates from replica #j,
including pending ones.

LOCAL(C): LOCAL(C)[j] is (almost) most recent value of
VAL(j)[j] known to front end C (will be refined in just a
moment)

DEP(R): Timestamp associated with a request,
reflecting what the request depends on.

ECE151 – Lecture 10 36

Processing Read Operations
Performing a read operation at a local copy.

ECE151 – Lecture 10 37

Processing Write Operations

Performing a write operation at a local copy.

