
ECE 151 – Lecture 2 1

ECE151 – Lecture 2

Chapter 2
Communication



ECE 151 – Lecture 2 2

Layered Protocols (1)

Layers, interfaces, and protocols in the OSI model.

2-1



ECE 151 – Lecture 2 3

Low-level layers

Physical layer: contains the specification and implementation
of bits, and their transmission between sender and receiver

Data link layer: prescribes the transmission of a series of bits
into a frame to allow for error and flow control

Network layer: describes how packets in a network of
computers are to be routed.

Observation: for many distributed systems, the lowest level
interface is that of the network layer – IP.

Note: IP multicasting is generally considered a standard
available service.



ECE 151 – Lecture 2 4

Transport Layer

Important: The transport layer provides the actual
communication facilities for most distributed
systems.

Standard Internet protocols:
 TCP: connection-oriented, reliable, stream-oriented

communication
 UDP: unreliable (best-effort) datagram

communication



ECE 151 – Lecture 2 5

Layered Protocols (2)

A typical message as it appears on the network.

2-2



ECE 151 – Lecture 2 6

Data Link Layer

Discussion between a receiver and a sender in the data link layer.

2-3



ECE 151 – Lecture 2 7

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4



ECE 151 – Lecture 2 8

Application Layer
Observation: Many application protocols are directly implemented on

top of transport protocols that do a lot of application-independent work.

Username +
Password

Username +
Password

None (PGP)Security

Caching +
DNS tricks

Caching + DNS
tricks

FloodingReplication

PullPullPushDistribution

URLHost + pathNewsgroupNaming

8-bit +
content type

7-bit text +
8-bit binary

(user has to guess)

7-bit +
MIME

Encoding

HTTPFTPNNTPTransfer

WWWFTPNews



ECE 151 – Lecture 2 9

Middleware Layer
Observation: Middleware is invented to provide common

services and protocols that can be used by many different
applications:

 A rich set of communication protocols, but which allow
different applications to communicate

 Marshaling and unmarshaling of data, necessary for
integrated systems

 Naming protocols, so that different applications can easily
share resources

 Security protocols, to allow different applications to
communicate in a secure way

 Scaling mechanisms, such as support for replication and
caching

Note: what remains are truly application-specific protocols



ECE 151 – Lecture 2 10

Middleware Protocols

An adapted reference model for networked communication.

2-5



ECE 151 – Lecture 2 11

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the
call to read

b) The stack while the called procedure is active



ECE 151 – Lecture 2 12

Basic RPC Operation

Observations:
 Application developers are familiar with simple

procedure model
 Well-engineered procedures operate in isolation

(black box)
 There is no fundamental reason not to execute

procedures on separate machine
Conclusion: communication between caller & callee

can be hidden by using procedure-call mechanism.



ECE 151 – Lecture 2 13

Client and Server Stubs

Principle of RPC between a client and server program.



ECE 151 – Lecture 2 14

Steps of a Remote Procedure Call

Steps involved in doing remote computation through RPC

2-8



ECE 151 – Lecture 2 15

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client



ECE 151 – Lecture 2 16

Parameter Specification and Stub Generation

a) A procedure
b) The corresponding message.



ECE 151 – Lecture 2 17

RPC: Parameter Passing

Parameter marshaling: There’s more than just wrapping
parameters into a message:

 Client and server machines may have different data
representations (think of byte ordering)

 Wrapping a parameter means transforming a value into a
sequence of bytes

 Client and server have to agree on the same encoding:
– How are basic data values represented (integers, floats, characters)
– How are complex data values represented (arrays, unions)
 Client and server need to properly interpret messages,

transforming them into machine-dependent representations.



ECE 151 – Lecture 2 18

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in

boxes indicate the address of each byte



ECE 151 – Lecture 2 19

RPC: Parameter Passing
RPC parameter passing:
 RPC assumes copy in/copy out semantics:

while procedure is executed, nothing can be assumed about
parameter values (only Ada supports this model).

 RPC assumes all data that is to be operated on is passed by
parameters. Excludes passing references to (global) data.

Conclusion: full access transparency cannot be realized.
Observation: If we introduce a remote reference

mechanism, access transparency can be enhanced:
 Remote reference offers unified access to remote data
 Remote references can be passed as parameter in RPCs



ECE 151 – Lecture 2 20

Doors

The principle of using Doors as IPC mechanism, even on the same machine.



ECE 151 – Lecture 2 21

Asynchronous RPC (1)

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12



ECE 151 – Lecture 2 22

Asynchronous RPC (2)

A client and server interacting through two asynchronous RPCs

2-13



ECE 151 – Lecture 2 23

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

2-14

Essence: Let the developer
concentrate on only the client-
and server-specific code; let
the RPC system (generators

and libraries) do the rest.



ECE 151 – Lecture 2 24

Binding a Client to a Server

Client-to-server binding in DCE.

2-15



ECE 151 – Lecture 2 25

Remote Distributed Objects
Data and operations encapsulated in an object
 Operations are implemented as methods, and are

accessible through interfaces
 Object offers only its interface to clients
 Object server is responsible for a collection of

objects
 Client stub (proxy) implements interface
 Server skeleton handles (un)marshaling and object

invocation



ECE 151 – Lecture 2 26

Distributed Objects

Common organization of a remote object with client-side proxy.

2-16



ECE 151 – Lecture 2 27

Remote Distributed Objects
Compile-time objects: Language-level objects, from

which proxy and skeletons are automatically
generated.

Runtime objects: Can be implemented in any
language, but require use of an object adapter that
makes the implementation appear as an object.

Transient objects: live only by virtue of a server: if
the server exits, so will the object.

Persistent objects: live independently from a server:
if a server exits, the object’s state and code remain
(passively) on disk.



ECE 151 – Lecture 2 28

Client-to-Object Binding
Object reference: Having an object reference allows a client

to bind to an object:
 Reference denotes server, object, and communication

protocol
 Client loads associated stub code
 Stub is instantiated and initialized for specific object

Two ways of binding:
 Implicit: Invoke methods directly on the referenced object
 Explicit: Client must first explicitly bind to object before

invoking it



ECE 151 – Lecture 2 29

Binding a Client to an Object

a) An example with implicit binding using only global
references

b) An example with explicit binding using global and local
references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)



ECE 151 – Lecture 2 30

Binding a Client to an Object

Some remarks:
 Reference may contain a URL pointing to an

implementation file
 (Server,object) pair is enough to locate target object
 We need only a standard protocol for loading and

instantiating code

Observation: Remote-object references allows us to
pass references as parameters. This was difficult with
ordinary RPCs.



ECE 151 – Lecture 2 31

Remote Method Invocation

Basics: (Assume client stub and server skeleton are in place)
 Client invokes method at stub
 Stub marshals request and sends it to server
 Server ensures referenced object is active:

– Create separate process to hold object
– Load the object into server process
– ...

 Request is unmarshaled by object’s skeleton, and referenced
method is invoked

 If request contained an object reference, invocation is applied
recursively (i.e., server acts as client)

 Result is marshaled and passed back to client
 Client stub unmarshals reply and passes result to client

application



ECE 151 – Lecture 2 32

RMI: Parameter Passing
Object reference: Much easier than in the case of RPC:
 Server can simply bind to referenced object, and invoke

methods
 Unbind when referenced object is no longer needed
Object-by-value: A client may also pass a complete object as

parameter value:
 An object has to be marshaled:

– Marshall its state
– Marshall its methods, or give a reference to where an 
implementation can be found

 Server unmarshals object. Note that we have now created a
copy of the original object.

 Object-by-value passing tends to introduce nasty problems



ECE 151 – Lecture 2 33

Parameter Passing

The situation when passing an object by reference or by value.

2-18



ECE 151 – Lecture 2 34

The DCE Distributed-Object Model

a) Distributed dynamic objects in DCE.
b) Distributed named objects

2-19



ECE 151 – Lecture 2 35

Message-Oriented Communication

 Synchronous versus asynchronous communications
 Message-Queuing System
 Message Brokers
 Example: IBM MQSeries



ECE 151 – Lecture 2 36

Synchronous Communication
Some observations: Client/Server computing is generally

based on a model of synchronous communication:
 Client and server have to be active at the time of

communication
 Client issues request and blocks until it receives reply
 Server essentially waits only for incoming requests, and

subsequently processes them
Drawbacks synchronous communication:
 Client cannot do any other work while waiting for reply
 Failures have to be dealt with immediately (the client is

waiting)
 In many cases the model is simply not appropriate (mail,

news)



ECE 151 – Lecture 2 37

Asynchronous Communication

Message-oriented middleware: Aims at high-level
asynchronous communication:

 Processes send each other messages, which are
queued

 Sender need not wait for immediate reply, but can do
other things

 Middleware often facilitates fault tolerance



ECE 151 – Lecture 2 38

Persistence and Synchronicity in Communication (1)

General organization of a communication system in which hosts are
connected through a network

2-20



ECE 151 – Lecture 2 39

Persistence and Synchronicity in Communication (2)

Persistent communication of letters back in the days of the Pony Express.



ECE 151 – Lecture 2 40

Persistence and Synchronicity in Communication (3)

a) Persistent asynchronous communication
b) Persistent synchronous communication

2-22.1



ECE 151 – Lecture 2 41

Persistence and Synchronicity in Communication (4)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

2-22.2



ECE 151 – Lecture 2 42

Persistence and Synchronicity in Communication (5)

e) Delivery-based transient synchronous communication at
message delivery

f) Response-based transient synchronous communication


