
ECE151 – Lecture 4 1

ECE151 – Lecture 4

Chapter 3
Processes

ECE151 – Lecture 4 2

Introduction to Threads

Basic idea: we build virtual processors in software, on top of
physical processors:

Processor: Provides a set of instructions along with the
capability of automatically executing a series of those
instructions.

Thread: A minimal software processor in whose context a
series of instructions can be executed. Saving a thread
context implies stopping the current execution and saving
all the data needed to continue the execution at a later stage.

Process: A software processor in whose context one or more
threads may be executed. Executing a thread, means
executing a series of instructions in the context of that
thread.

ECE151 – Lecture 4 3

Virtualization

ECE151 – Lecture 4 4

Context Switching

Processor context: The minimal collection of values stored in
the registers of a processor used for the execution of a series
of instructions (e.g., stack pointer, addressing registers,
program counter).

Thread context: The minimal collection of values stored in
registers and memory, used for the execution of a series of
instructions (i.e., processor context, state).

Process context: The minimal collection of values stored in
registers and memory, used for the execution of a thread
(i.e., thread context, but now also at least MMU register
values).

ECE151 – Lecture 4 5

Context Switching

Observation 1: Threads share the same address space.
Thread context switching can be done entirely

independent of the operating system.
Observation 2: Process switching is generally more

expensive than thread switching; it involves getting
the OS in the loop, i.e., trapping to the kernel.

Observation 3: Creating and destroying threads is
much cheaper than doing so for processes.

ECE151 – Lecture 4 6

Threads and Operating Systems

Main issue: Should an OS kernel provide threads, or should
they be implemented as user-level packages?

User-space solution: We’ll have nothing to do with the
kernel, so all operations can be completely handled within a
single process implementations can be extremely efficient.

 All services provided by the kernel are done on behalf of the
process in which a thread resides if the kernel decides to
block a thread, the entire process will be blocked. Requires
messy solutions.

 In practice we want to use threads when there are lots of
external events: threads block on a per-event basis if the
kernel can’t distinguish threads, how can it support
signaling events to them.

ECE151 – Lecture 4 7

Threads and Operating Systems

Kernel solution: The whole idea is to have the kernel contain
the implementation of a thread package. This does mean that
all operations return as system calls
 Operations that block a thread are no longer a problem: the
kernel schedules another available thread within the same
process.
 Handling external events is simple: the kernel (which catches
all events) schedules the thread associated with the event.
 The big problem is the loss of efficiency due to the fact that
each thread operation requires a trap to the kernel.
Conclusion: Try to mix user-level and kernel-level threads
into a single concept.

ECE151 – Lecture 4 8

Thread Usage in Nondistributed Systems

Context switching as the result of IPC

ECE151 – Lecture 4 9

Thread Implementation

Combining kernel-level lightweight processes and user-level
threads.

ECE151 – Lecture 4 10

Solaris Threads

When a user-level thread does a system call, the LWP that is
executing that thread, blocks. The thread remains bound to
the LWP.

 The kernel can simply schedule another LWP having a
runnable thread bound to it. Note that this thread can switch
to any other runnable thread currently in user space.

 When a thread calls a blocking user-level operation, we can
simply do a context switch to a runnable thread, which is
then bound to the same LWP.

 When there are no threads to schedule, an LWP may remain
idle, and may even be removed (destroyed) by the kernel.

ECE151 – Lecture 4 11

Threads and Distributed Systems

Multithreaded clients: Main issue is hiding network latency
Multithreaded Web client:
 Web browser scans an incoming HTML page, and finds that

more files need to be fetched
 Each file is fetched by a separate thread, each doing a

(blocking) HTTP request
 As files come in, the browser displays them
Multiple RPCs:
 A client does several RPCs at the same time, each one by a

different thread
 It then waits until all results have been returned
 Note: if RPCs are to different servers, we may have a linear

speed-up compared to doing RPCs one after the other

ECE151 – Lecture 4 12

Threads and Distributed Systems
Multithreaded servers: Main issue is improved performance

and better structure
Improve performance:
 Starting a thread to handle an incoming request is much

cheaper than starting a new process
 Having a single-threaded server prohibits simply scaling the

server to a multiprocessor system
 As with clients: hide network latency by reacting to next

request while previous one is being replied
Better structure:
 Most servers have high I/O demands. Using simple, well-

understood blocking calls simplifies the overall structure
 Multithreaded programs tend to be smaller and easier to

understand due to simplified flow of control

ECE151 – Lecture 4 13

Multithreaded Servers (1)

A multithreaded server organized in a dispatcher/worker
model.

ECE151 – Lecture 4 14

Multithreaded Servers (2)

Three ways to construct a server.

Parallelism, nonblocking system callsFinite-state machine

No parallelism, blocking system callsSingle-threaded process

Parallelism, blocking system callsThreads

CharacteristicsModel

ECE151 – Lecture 4 15

User Interfaces

Essence: A major part of client-side software is focused on
(graphical) user interfaces.

Compound documents: Make the user interface application-
aware to allow interapplication communication:

 drag-and-drop: move objects to other positions on the
screen, possibly invoking interaction with other applications

 in-place editing: integrate several applications at user-
interface level (word processing + drawing facilities

ECE151 – Lecture 4 16

The X-Window System

The basic organization of the X Window System

ECE151 – Lecture 4 17

Client-Side Software

Essence: Often focused on providing distribution transparency
 access transparency: client-side stubs for RPCs and RMIs
 location/migration transparency: let client-side software keep

track of actual location
 replication transparency: multiple invocations handled by

client stub:
failure transparency: can often be placed only at client (we’re

trying to mask server and communication failures).

ECE151 – Lecture 4 18

Client-Side Software for Distribution Transparency

A possible approach to transparent replication of a remote
object using a client-side solution.

ECE151 – Lecture 4 19

Servers

Basic model: A server is a process that waits for incoming
service requests at a specific transport address.

In practice, there is a one-to-one mapping between
 a port and a service:

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet

24 any private mail system
smtp 25 Simple Mail Transfer
login 49 Login Host Protocol
sunrpc 111 SUN RPC (portmapper)
courier 530 Xerox RPC

ECE151 – Lecture 4 20

Servers

Superservers: Servers that listen to several ports, i.e.,
provide several independent services. In practice,
when a service request comes in, they start a
subprocess to handle the request (UNIX)

Iterative vs. concurrent servers: Iterative servers can
handle only one client at a time, in contrast to
concurrent servers

ECE151 – Lecture 4 21

Servers: General Design Issues

a) Client-to-server binding using a daemon as in DCE
b) Client-to-server binding using a superserver as in

UNIX 3.7

ECE151 – Lecture 4 22

Out-of-Band Communication
Issue: Is it possible to interrupt a server once it has accepted

(or is in the process of accepting) a service request?
Solution 1: Use a separate port for urgent data (possibly per

service request):
 Server has a separate thread (or process) waiting for incoming

urgent messages
 When urgent message comes in, associated request is put on

hold
 Note: we require OS supports high-priority scheduling

 of specific
threads or processes

Solution 2: Use out-of-band communication facilities of the
transport layer:

 Example: TCP allows to send urgent messages in the same
connection

 Urgent messages can be caught using OS signaling techniques

ECE151 – Lecture 4 23

Servers and State
Stateless servers: Never keep accurate information about the

status of a client after having handled a request:
 Don’t record whether a file has been opened (simply close it

again after access)
 Don’t promise to invalidate a client’s cache
 Don’t keep track of your clients
Consequences:
 Clients and servers are completely independent
 State inconsistencies due to client or server crashes are

reduced
 Possible loss of performance because, e.g., a server cannot

anticipate client behavior (think of prefetching file blocks)
Question: Does connection-oriented communication fit into a

stateless design?

ECE151 – Lecture 4 24

Servers and State

Stateful servers: Keeps track of the status of its
clients:

 Record that a file has been opened, so that prefetching
can be done

 Knows which data a client has cached, and allows
clients to keep local copies of shared data

Observation: The performance of stateful servers can
be extremely high, provided clients are allowed to
keep local copies. As it turns out, reliability is not a
major problem.

ECE151 – Lecture 4 25

Object Servers

Servant: The actual implementation of an object, sometimes containing
only method implementations:

 Collection of C or COBOL functions, that act on structs, records,
database tables, etc.

 Java or C++ classes
Skeleton: Server-side stub for handling network I/O:
 Unmarshalls incoming requests, and calls the appropriate servant code
 Marshalls results and sends reply message
 Generated from interface specifications
Object adapter: The “manager” of a set of objects:
 Inspects (as first) incoming requests
 Ensures referenced object is activated (requires identification of servant)
 Passes request to appropriate skeleton, following specific activation

policy
 Responsible for generating object references

ECE151 – Lecture 4 26

Object Adapter

 Organization of an
object server
supporting different
activation policies.

ECE151 – Lecture 4 27

Object Adapter

The header.h file used by the adapter and any
program that calls an adapter.

/* Definitions needed by caller of adapter and adapter */
#define TRUE
#define MAX_DATA 65536

/* Definition of general message format */
struct message {
 long source /* senders identity */
 long object_id; /* identifier for the requested object */
 long method_id; /* identifier for the requested method */
 unsigned size; /* total bytes in list of parameters */
 char **data; /* parameters as sequence of bytes */
};

/* General definition of operation to be called at skeleton of object */
typedef void (*METHOD_CALL)(unsigned, char* unsigned*, char**);

long register_object (METHOD_CALL call); /* register an object */
void unrigester_object (long object)id); /* unrigester an object */
void invoke_adapter (message *request); /* call the adapter */

ECE151 – Lecture 4 28

Object Adapter

The thread.h file used by the adapter for using threads.

typedef struct thread THREAD; /* hidden definition of a thread */

thread *CREATE_THREAD (void (*body)(long tid), long thread_id);
/* Create a thread by giving a pointer to a function that defines the actual */
/* behavior of the thread, along with a thread identifier */

void get_msg (unsigned *size, char **data);
void put_msg(THREAD *receiver, unsigned size, char **data);
/* Calling get_msg blocks the thread until of a message has been put into its */
/* associated buffer. Putting a message in a thread's buffer is a nonblocking */
/* operation. */

ECE151 – Lecture 4 29

Object Adapter

The main part of an
adapter that implements
a thread-per-object
policy.

ECE151 – Lecture 4 30

Reasons for Migrating Code

The principle of dynamically configuring a client to communicate to a
server. The client first fetches the necessary software, and then
invokes the server.

ECE151 – Lecture 4 31

Strong and Weak Mobility

Object components:
 Code segment: contains the actual code
 Data segment: contains the state
 Execution state: contains context of thread executing the object’s code
Weak mobility: Move only code and data segment (and start execution

from the beginning) after migration:
 Relatively simple, especially if code is portable
 Distinguish code shipping (push) from code fetching (pull)
Strong mobility: Move component, including execution state
 Migration: move the entire object from one machine to the other
 Cloning: simply start a clone, and set it in the same execution state.

ECE151 – Lecture 4 32

Models for Code Migration

Alternatives for code migration.

ECE151 – Lecture 4 33

Managing Local Resources

Problem: An object uses local resources that may or may not be
available at the target site.

Resource types:
 Fixed: the resource cannot be migrated, such as local hardware
 Fastened: the resource can, in principle, be migrated but only at high

cost
 Unattached: the resource can easily be moved along with the object

(e.g. a cache)
Object-to-resource binding:
 By identifier: the object requires a specific instance of a resource (e.g. a

specific database)
 By value: the object requires the value of a resource (e.g. the set of

cache entries)
 By type: the object requires that only a type of resource is available

(e.g. a color monitor)

ECE151 – Lecture 4 34

Migration and Local Resources

Actions to be taken with respect to the references to local
resources when migrating code to another machine.

GR
GR

RB (or GR)

GR (or MV)
GR (or CP)

RB (or GR, CP)

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

By identifier
By value
By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource

binding

ECE151 – Lecture 4 35

Migration in Heterogenous Systems

Main problem:
 The target machine may not be suitable to execute the

migrated code
 The definition of process/thread/processor context is highly

dependent on local hardware, operating system and runtime
system

Only solution: Make use of an abstract machine that is
implemented on different platforms

Current solutions:
 Interpreted languages running on a virtual machine

(Java/JVM; scripting languages)
 Existing languages: allow migration at specific “transferable”

points, such as just before a function call.

ECE151 – Lecture 4 36

Migration in Heterogeneous Systems

The principle of maintaining a migration stack to support
migration of an execution segment in a heterogeneous
environment

ECE151 – Lecture 4 37

What’s an Agent?

Definition: An autonomous process capable of
reacting to, and initiating changes in its
environment, possibly in collaboration with users
and other agents

 collaborative agent: collaborate with others in a
multiagent system

 mobile agent: can move between machines
 interface agent: assist users at user-interface level
 information agent: manage information from

physically different sources

ECE151 – Lecture 4 38

Software Agents in Distributed Systems

Some important properties by which different types of agents
can be distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other
agentsYesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

DescriptionCommon to
all agents?Property

ECE151 – Lecture 4 39

Agent Technology
The general model of an agent platform (adapted from

[fipa98-mgt]).

Management: Keeps track of where the agents on
this platform are (mapping agent ID to port)
Directory: Mapping of agent names & attributes to
agent IDs
ACC: Agent Communication Channel, used to
communicate with other platforms

ECE151 – Lecture 4 40

Agent Communication Languages (1)
Examples of different message types in the FIPA ACL [fipa98-acl],

giving the purpose of a message, along with the description of the
actual message content.

Reference to
sourceSubscribe to an information sourceSUBSCRIBE

Action specificationRequest that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

ECE151 – Lecture 4 41

Agent Communication Languages (2)

A simple example of a FIPA ACL message sent between two agents
using Prolog to express genealogy information.

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology

PrologLanguage

elke@iiop://royalty-watcher.uk:5623Receiver

max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField

ECE151 – Lecture 4 42

Overview of Code Migration in D'Agents (1)

A simple example of a Tel agent in D'Agents
submitting a script to a remote machine (adapted
from [gray.r95])

proc factorial n {
 if ($n ≤ 1) { return 1; } # fac(1) = 1
 expr $n * [factorial [expr $n – 1]] # fac(n) = n * fac(n – 1)

}

set number … # tells which factorial to compute

set machine … # identify the target machine

agent_submit $machine –procs factorial –vars number –script {factorial $number }

agent_receive … # receive the results (left unspecified for simplicity)

ECE151 – Lecture 4 43

Overview of Code Migration in D'Agents (2)
An example of a Tel agent in D'Agents migrating to different

machines where it executes the UNIX who command (adapted
from [gray.r95])

all_users $machines

proc all_users machines {
 set list "" # Create an initially empty list
 foreach m $machines { # Consider all hosts in the set of given machines
 agent_jump $m # Jump to each host
 set users [exec who] # Execute the who command
 append list $users # Append the results to the list
 }
 return $list # Return the complete list when done
}

set machines … # Initialize the set of machines to jump to
set this_machine # Set to the host that starts the agent

Create a migrating agent by submitting the script to this machine, from where
it will jump to all the others in $machines.

agent_submit $this_machine –procs all_users
-vars machines
-script { all_users $machines }

agent_receive … #receive the results (left unspecified for simplicity)

ECE151 – Lecture 4 44

Implementation Issues (1)

The architecture of the D'Agents system.

ECE151 – Lecture 4 45

Implementation Issues (2)

The parts comprising the state of an agent in D'Agents.

Stack of activation records, one for each running
commandStack of call frames

Stack of commands currently being executedStack of commands

Definitions of scripts to be executed by an agentProcedure definitions

User-defined global variables in a programGlobal program variables

Return codes, error codes, error strings, etc.Global system variables

Variables needed by the interpreter of an agentGlobal interpreter variables

DescriptionStatus

