
ECE151 – Lecture 5 1

ECE151 – Lecture 5

Chapter 4
Naming

ECE151 – Lecture 5 2

Naming
 Names, identifiers, and addresses
 Name resolution
 Name space implementation
Essence: Names are used to denote entities in a

distributed system. To operate on an entity, we need
to access it at an access point. Access points are
entities that are named by means of an address.

Note: A location-independent name for an entity E,
is independent from the addresses of the access
points offered by E.

ECE151 – Lecture 5 3

Identifiers
Pure name: A name that has no meaning at all; it is just a

random string. Pure names can be used for comparison
only.

Identifier: A name having the following properties:
P1 Each identifier refers to at most one entity
P2 Each entity is referred to by at most one identifier
P3 An identifier always refers to the same entity (prohibits

reusing an identifier)
Observation: An identifier need not necessarily be a pure

name, i.e., it may have content.
Question: Can the content of an identifier ever change?

ECE151 – Lecture 5 4

Name Spaces
Essence: a graph in which a leaf node represents a (named)

entity. A directory node is an entity that refers to other
nodes. A directory node contains a (directory) table of (edge
label, node identifier) pairs.

ECE151 – Lecture 5 5

Name Spaces
Observation:We can easily store all kinds of attributes in a

node, describing aspects of the entity the node represents:
 Type of the entity
 An identifier for that entity
 Address of the entity’s location
 Nicknames
 ...
Observation: Directory nodes can also have attributes,

besides just storing a directory table with
(edge label, node identifier) pairs.

ECE151 – Lecture 5 6

Name Resolution
Problem: To resolve a name we need a directory node.

How do we actually find that (initial) node?
Closure mechanism: The mechanism to select the implicit

context from which to start name resolution:
 www.cs.vu.nl: start at a DNS name server
 /home/steen/mbox: start at the local NFS file server

(possible recursive search)
 0031204447784: dial a phone number
 130.37.24.8: IP address of the VU’s Web server
Question: Why are closure mechanisms always implicit?
Observation: A closure mechanism may also determine how

name resolution should proceed

ECE151 – Lecture 5 7

Name Linking
Hard link: What we have described so far as a path

name: a name that is resolved by following a specific
path in a naming graph from one node to another.

Soft link: Allow a node O to contain a name of another
node:

 First resolve O’s name (leading to O)
 Read the content of O, yielding name.
 Name resolution continues with name.
Observations:
 The name resolution process determines that we read

the content of a node, in particular, the name in the
other node that we need to go to.

 One way or the other, we know where and how to start
name resolution given name.

ECE151 – Lecture 5 8

Linking and Mounting

The concept of a symbolic link explained in a naming graph.

ECE151 – Lecture 5 9

Merging Name Spaces
Problem: We have different name spaces that we wish to

access from any given name space.
Solution 1: Introduce a naming scheme by which pathnames

of different name spaces are simply concatenated (URLs).
 ftp://ftp.cs.vu.nl/pub/steen/
 ftp Name of protocol used to talk with server
 :// Name space delimiter
 ftp.cs.vu.nl Name of a node representing an FTP

server, and containing the IP address of
that server

 / Name space delimiter
 pub/steen/ Name of a (context) node in the name

space rooted at the context node mapped to
the FTP server

ECE151 – Lecture 5 10

Merging Name Spaces
Introduce nodes that contain the name of a node in a
“foreign” name space, along with the information how to
select the initial context in that foreign name space (Jade).

Mount point: (Directory)
node in naming graph that
refers to other naming graph
Mounting point: (Directory)
node in other naming graph
that is referred to.

Mounting remote
name spaces

through a specific
process protocol.

ECE151 – Lecture 5 11

Merging Name Spaces
Use only full pathnames, in which the starting context
is explicitly identified, and merge by adding a new root node
(DEC’s Global Name Space).

Organization of the DEC
Global Name Service

ECE151 – Lecture 5 12

Name Space Implementation
Basic issue: Distribute the name resolution process as well as

name space management across multiple machines, by
distributing nodes of the naming graph.

Consider a hierarchical naming graph and distinguish three
levels:

Global level: Consists of the high-level directory nodes.
Main aspect is that these directory nodes have to be jointly
managed by different administrations

Administrational level: Contains mid-level directory nodes
that can be grouped in such a way that each group can be
assigned to a separate administration.

Managerial level: Consists of low-level directory nodes
within a single administration. Main issue is effectively
mapping directory nodes to local name servers.

ECE151 – Lecture 5 13

Name Space Implementation
An example partitioning of the DNS name
space, including Internet-accessible files, into

three layers.

ECE151 – Lecture 5 14

Name Space Implementation

A comparison between name servers for implementing nodes from a
large-scale name space partitioned into a global layer, as an
administrational layer, and a managerial layer.

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem

ECE151 – Lecture 5 15

Implementation of Name Resolution

The principle of iterative name resolution.

ECE151 – Lecture 5 16

Implementation of Name Resolution

The principle of recursive name resolution.

ECE151 – Lecture 5 17

Implementation of Name Resolution

Recursive name resolution of <nl, vu, cs, ftp>. Name servers
cache intermediate results for subsequent lookups.

#<vu>
#<vu,cs>
#<vu,cs,ftp>

#<cs>
#<cs,ftp>

#<ftp>

--

Receives
and caches

#<nl>
#<nl,vu>
#<nl,vu,cs>
#<nl,vu,cs,ftp>

<vu,cs,ftp>#<nl><ni,vu,cs,ftp>root

#<vu>
#<vu,cs>
#<vu,cs,ftp>

<cs,ftp>#<vu><vu,cs,ftp>ni

#<cs>
#<cs, ftp>

<ftp>#<cs><cs,ftp>vu

#<ftp>--#<ftp><ftp>cs

Returns to
requester

Passes to
childLooks upShould

resolve
Server for

node

ECE151 – Lecture 5 18

Scalability Issues
Size scalability: We need to ensure that servers can handle a

large number of requests per time unit, i.e. high-level
servers are in big trouble.

Solution: Assume (at least at global and administrational
level) that content of nodes hardly ever changes.
In that case, we can apply extensive replication by mapping
nodes to multiple servers, and start name resolution at the
nearest server.

Observation: An important attribute of many nodes is the
address where the represented entity can be contacted.
Replicating nodes makes large-scale traditional name
servers unsuitable for locating mobile entities.

ECE151 – Lecture 5 19

Scalability Issues

Geographical scalability: We need to ensure that the
name resolution process scales across large
geographical distances.

Problem: By mapping nodes to servers that may, in
principle, be located anywhere, we introduce an
implicit location dependency in our naming scheme.

Solution: No general one available yet.

ECE151 – Lecture 5 20

Implementation of Name Resolution

The comparison between recursive and iterative name
resolution with respect to communication costs.

ECE151 – Lecture 5 21

Locating Mobile Entities

 Naming versus locating objects
 Simple solutions
 Home-based approaches
 Hierarchical approaches

ECE151 – Lecture 5 22

Naming & Locating Objects
Location service: Solely aimed at providing the addresses of

the current locations of entities.
Assumption: Entities are mobile, so that their current address

may change frequently.
Naming service: Aimed at providing the content of nodes in a

name space, given a (compound) name.
Content consists of different (attribute,value) pairs.

Assumption: Node contents at global and administrational
level is relatively stable for scalability reasons.

Observation: If a traditional naming service is used to locate
entities, we also have to assume that node contents at the
managerial level is stable, as we can use only names as
identifiers (think of Web pages).

ECE151 – Lecture 5 23

Naming versus Locating Entities

a) Direct, single level mapping between names and addresses.
b) T-level mapping using identities.

Problem: It is not realistic to assume stable node contents
down to the local naming level
Solution: Decouple naming from locating entities

ECE151 – Lecture 5 24

Naming versus Locating Entities

Name: Any name in a traditional naming space
Entity ID: A true identifier
Address: Provides all information necessary to

contact an entity
Observation: An entity’s name is now completely

independent from its location.
Question: What may be a typical address?

ECE151 – Lecture 5 25

Simple Solutions for Locating Entities
Broadcasting: Simply broadcast the ID, requesting the entity to return

its current address.
 Can never scale beyond local-area networks (think of ARP/RARP)
 Requires all processes to listen to incoming location requests
Forwarding pointers: Each time an entity moves, it leaves behind a

pointer telling where it has gone to.
 Dereferencing can be made entirely transparent to clients by simply

following the chain of pointers
 Update a client’s reference as soon as present location has been found
 Geographical scalability problems:

– Long chains are not fault tolerant
– Increased network latency at dereferencing

Essential to have separate chain reduction mechanisms

ECE151 – Lecture 5 26

Home-Based Approaches

Single-tiered scheme: Let a home keep track of
where the entity is:

 An entity’s home address is registered at a naming
service

 The home registers the foreign address of the entity
 Clients always contact the home first, and then

continues with the foreign location

ECE151 – Lecture 5 27

Home-Based Approaches
Two-tiered scheme: Keep track of visiting entities:
 Check local visitor register first
 Fall back to home location if local lookup fails
Problems with home-based approaches:
 The home address has to be supported as long as the entity

lives.
 The home address is fixed, which means an unnecessary

burden when the entity permanently moves to another
location

 Poor geographical scalability (the entity may be next to the
client)

Question: How can we solve the “permanent move” problem?

ECE151 – Lecture 5 28

Hierarchical Location Services
Basic idea: Build a large-scale search tree for which the

underlying network is divided into hierarchical domains.
 Each domain is represented by a separate directory node.
 The address of an entity is stored in a leaf node, or in an

intermediate node
 Intermediate nodes contain a pointer to a child if and only if

the subtree rooted at the child stores an address of the entity
 The root knows about all entities

Start lookup at local leaf node
 If node knows about the entity, follow downward pointer,

otherwise go one level up
 Upward lookup always stops at root

ECE151 – Lecture 5 29

HLS: Scalability Issues
Size scalability: Again, we have a problem of overloading

higher-level nodes:
 Only solution is to partition a node into a number of subnodes

and evenly assign entities to subnodes
 Naive partitioning may introduce a node management

problem, as a subnode may have to know how its parent and
children are partitioned.

Geographical scalability: We have to ensure that lookup
operations generally proceed monotonically in the direction
of where we’ll find an address:

 If entity E generally resides in California, we should not let a
root subnode located in France store E’s contact record.

 Unfortunately, subnode placement is not that easy, and only a
few tentative solutions are known

ECE151 – Lecture 5 30

Forwarding Pointers (1)

The principle of forwarding pointers using (proxy, skeleton) pairs.

ECE151 – Lecture 5 31

Forwarding Pointers (2)

Redirecting a forwarding pointer, by storing a
shortcut in a proxy.

ECE151 – Lecture 5 32

The DNS Name Space

The most important types of resource records forming
the contents of nodes in the DNS name space.

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node representsHostHINFO

Contains the canonical name of a hostHostPTR

Symbolic link with the primary name of the represented nodeNodeCNAME

Refers to a name server that implements the represented zoneZoneNS

Refers to a server handling a specific serviceDomainSRV

Refers to a mail server to handle mail addressed to this nodeDomainMX

Contains an IP address of the host this node representsHostA

Holds information on the represented zoneZoneSOA

DescriptionAssociated
entity

Type of
record

ECE151 – Lecture 5 33

DNS Implementation (1)

An excerpt
from the

DNS
database
for the
zone

cs.vu.nl.

ECE151 – Lecture 5 34

DNS Implementation (2)

Part of the description for the vu.nl domain
which contains the cs.vu.nl domain.

130.37.21.1Asolo.cs.vu.nl

solo.cs.vu.nlNIScs.vu.nl

Record valueRecord typeName

ECE151 – Lecture 5 35

The X.500 Name Space (1)

A simple example of a X.500 directory
entry using X.500 naming conventions.

130.37.21.11--WWW_Server

130.37.21.11--FTP_Server

130.37.24.6, 192.31.231,192.31.231.66--Mail_Servers

Main serverCNCommonName

Math. & Comp. Sc.OUOrganizationalUnit

Vrije UniversiteitLOrganization

AmsterdamLLocality

NLCCountry

ValueAbbr.Attribute

ECE151 – Lecture 5 36

The X.500 Name Space (2)

Part of the directory
information tree.

ECE151 – Lecture 5 37

The X.500 Name Space (3)
Two directory entries having Host_Name as RDN.

192.31.231.66Host_Address192.31.231.42Host_Address

zephyrHost_NamestarHost_Name

Main serverCommonNameMain serverCommonName

Math. & Comp.
Sc.OrganizationalUnitMath. & Comp. Sc.OrganizationalUnit

Vrije UniversiteitOrganizationVrije UniversiteitOrganization

AmsterdamLocalityAmsterdamLocality

NLCountryNLCountry

ValueAttributeValueAttribute

