
ECE151 – Lecture 7 1

ECE151 – Lecture 7

Chapter 5
Synchronization

ECE151 – Lecture 7 2

Clock Synchronization

When each machine has its own clock, an event that
occurred after another event may nevertheless be
assigned an earlier time.

Physical clocks
 Logical clocks
 Vector clocks

ECE151 – Lecture 7 3

Physical Clocks

Problem: Sometimes we simply need the exact time, not just an
ordering.

Solution: Universal Coordinated Time (UTC):
 Based on the number of transitions per second of the cesium 133 atom

(pretty accurate).
 At present, the real time is taken as the average of some 50 cesium-

clocks around the world.
 Introduces a leap second from time to time to compensate that days are

getting longer.
UTC is broadcast through short wave radio and satellite.

Satellites can give an accuracy of about 0 5 ms.
Question: Does this solve all our problems? Don’t we now have some

global timing mechanism?

ECE151 – Lecture 7 4

Physical Clocks (1)

Computation of the mean solar day.

ECE151 – Lecture 7 5

Physical Clocks (2)

TAI seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when

necessary to keep in phase with the sun.

ECE151 – Lecture 7 6

Physical Clocks
Problem: Suppose we have a distributed system with

a UTC-receiver somewhere in it we still have to
distribute its time to each machine.

Basic principle:
 Every machine has a timer that generates an interrupt

H times per second.
 There is a clock in machine p that ticks on each timer

interrupt. Denote the value of that clock by Cp(t),
where t is UTC time.

 Ideally, we have that for each machine p, Cp(t) = t,
or, in other words, dC/dt = 1

ECE151 – Lecture 7 7

Clock Synchronization Algorithms
The relation between clock time
and UTC when clocks tick at
different rates.

In practice:
1 - ρ < dC/dt < 1 + ρ

Goal: Never let two clocks in
any system differ by more
than δ time units
synchronize at least every δ
/(2 ρ) seconds.

ECE151 – Lecture 7 8

Clock Synchronization Principles
Principle I: Every machine asks a time server for the

accurate time at least once every δ/(2ρ) seconds.
Okay, but you need an accurate measure of round trip

delay, including interrupt handling and processing
incoming messages.

Principle II: Let the time server scan all machines
periodically, calculate an average, and inform each
machine how it should adjust its time relative to its
present time.

Okay, you’ll probably get every machine in sync. You
don’t even need to propagate UTC time (why not?)

Fundamental problem: You’ll have to ensure that
setting time back is never allowed (smooth adjustments)

ECE151 – Lecture 7 9

Cristian's Algorithm
Getting the current time from a time server.

ECE151 – Lecture 7 10

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

ECE151 – Lecture 7 11

The Happened-Before Relationship
Problem: We first need to introduce a notion of ordering

before we can order anything.
The happened-before relation on the set of events in a

distributed system is the smallest relation satisfying:
 If a and b are two events in the same process, and a comes

before b, then a → b.
 If a is the sending of a message, and b is the receipt of that

message, then a → b.
 If a → b and b → c, then a → c.
Note: this introduces a partial ordering of events in a system

with concurrently operating processes.

ECE151 – Lecture 7 12

Logical Clocks
Problem: How do we maintain a global view on the

system’s behavior that is consistent with the
happenedbefore relation?

Solution: attach a timestamp C(e) to each event e,
satisfying the following properties:

P1: If a and b are two events in the same process, and
a → b, then we demand that C(a) < C(b) .

P2: If a corresponds to sending a message m, and b to
the receipt of that message, then also C(a) < C(b) .

Problem: How to attach a timestamp to an event when
there’s no global clock maintain a consistent set of
logical clocks, one per process.

ECE151 – Lecture 7 13

Logical Clocks
Each process Pi maintains a local counter Ci and adjusts this

counter according to the following rules:
1: For any two successive events that take place within Pi,

Ci is incremented by 1.
2: Each time a message m is sent by process Pi,

the message receives a timestamp Tm = Ci.
3: Whenever a message m is received by a process Pj,

Pj adjusts its local counter Cj:
Cj = max(Cj + 1, Tm + 1)

Property P1 is satisfied by (1); Property P2 by (2) and (3).

ECE151 – Lecture 7 14

Lamport Timestamps

a) Three processes, each with its own clock. The clocks run at
different rates.

b) Lamport's algorithm corrects the clocks.

ECE151 – Lecture 7 15

Total Ordering with Logical Clocks
Problem: it can still occur that two events happen at the same

time. Avoid this by attaching a process number to an event:
Pi timestamps event e with Ci(e)

Then: Ci(a) before Cj(b) if and only if:
1: Ci(a) < Cj(a) or
2: Ci(a) < Cj(b) and i = j

ECE151 – Lecture 7 16

Example: Totally-Ordered Multicasting
Problem: We sometimes need to guarantee that concurrent updates on a replicated

database are seen in the same order everywhere:
 Process P1 adds $100 to an account (initial value: $1000)
 Process P2 increments account by 1%
 There are two replicas

Outcome: in absence of proper synchronization,
replica #1 will end up with $1111, while replica #2 ends up with $1110.

ECE151 – Lecture 7 17

Example: Totally-Ordered Multicast

 Process Pi sends timestamped message msgi to all
others. The message itself is put in a local queue
queuei.

 Any incoming message at Pj is queued in queuej,
according to its timestamp.

 Pj passes a message msgi to its application if:
(1) msgi is at the head of queuej
(2) for each process Pk, there is a message msgk

in queuej with a larger timestamp.
Note: We are assuming that communication is reliable

and FIFO ordered.

ECE151 – Lecture 7 18

Extension to Multicasting:
Vector Timestamps

Observation: Lamport timestamps do not guarantee that
if C(a) < C(b) that a indeed happened before b.

We need vector timestamps for that.
 Each process Pi has an array Vi[1..n] , where Vi[j] denotes

the number of events that process Pi knows have taken
place at process Pj.

 When Pi sends a message m, it adds 1 to Vi[I], and sends Vi
along with m as vector timestamp vt(m) . Result: upon
arrival, each other process knows Pi’s timestamp.

Question: What does Vi[j] = k mean in terms of messages
sent and received?

ECE151 – Lecture 7 19

Extension to Multicasting:
Vector Timestamps

 When a process Pj receives a message m from Pi
with vector timestamp vt(m), it
(1) updates each Vj[k] to max(Vj[k],V(m)[k]), and
(2) increments Vj j by 1. NOTE: Book is wrong!

 To support causal delivery of messages, assume you
increment your own component only when sending a
message. Then, Pj postpones delivery of m until:

– vt(m)[i] = Vj[i] + 1.
– vt(m)[k] =< Vj[k] for k not= i.

Example: Take V3 = [0, 2, 2], vt(m) = [1, 3, 0] .
What information does P3 have, and what will it do
when receiving m (from P1)?

ECE151 – Lecture 7 20

Global State

a) A consistent cut
b) An inconsistent cut

Basic Idea: Sometimes you want to collect the current state of a
distributed computation, called a distributed snapshot.
It consists of all local states and messages in transit.

Important: A distributed snapshot should reflect a consistent
state:

ECE151 – Lecture 7 21

Global State
Any process P can initiate taking a distributed snapshot
 P starts by recording its own local state
 P sends a marker along each of its outgoing channels
 When Q receives a marker through channel C, its action

depends on whether it had already recorded its local state:
– Not yet recorded: it records its local state, and sends the

marker along each of its outgoing channels
– Already recorded: the marker on C indicates that the

channel’s state should be recorded:
All messages received before this marker and

 after Q recorded its own state.
 Q is finished when it has received a marker along each of its

incoming channels

ECE151 – Lecture 7 22

Global State

a) Organization of a process and channels for a
distributed snapshot

ECE151 – Lecture 7 23

Global State

b) Process Q receives a marker for the first time and records its local
state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording

the state of the incoming channel

ECE151 – Lecture 7 24

Election Algorithms
Principle: An algorithm requires that some process acts as a

coordinator. The question is how to select this special
process dynamically.

Note: In many systems the coordinator is chosen by hand
(e.g. file servers). This leads to centralized solutions with a
single point of failure.

Question: If a coordinator is chosen dynamically, to what
extent can we speak about a centralized or distributed
solution?

Question: Is a fully distributed solution, i.e. one without a
coordinator, always more robust than any centralized/
coordinated solution?

ECE151 – Lecture 7 25

Election by Bullying
Principle: Each process has an associated priority (weight).

The process with the highest priority should always be
elected as the coordinator.

Issue: How do we find the heaviest process?
 Any process can just start an election by sending an election

message to all other processes (assuming you don’t know
the weights of the others).

 If a process Pheavy receives an election message from a
lighter process Plight, it sends a take-over message to
Plight. Plight is out of the race.

 If a process doesn’t get a take-over message back, it wins, and
sends a victory message to all other processes.

ECE151 – Lecture 7 26

The Bully Algorithm

The bully election algorithm
a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

ECE151 – Lecture 7 27

Global State
d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

ECE151 – Lecture 7 28

Election in a Ring
Principle: Process priority is obtained by organizing

processes into a (logical) ring. Process with the highest
priority should be elected as coordinator.

 Any process can start an election by sending an election
message to its successor. If a successor is down, the
message is passed on to the next successor.

 If a message is passed on, the sender adds itself to the list.
When it gets back to the initiator, everyone had a chance to
make its presence known.

 The initiator sends a coordinator message around the ring
containing a list of all living processes.

 The one with the highest priority is elected as coordinator.
Does it matter if two processes initiate an election?
What happens if a process crashes during the election?

ECE151 – Lecture 7 29

A Ring Algorithm
Election algorithm using a ring.

