
ECE151 – Lecture 8 1

ECE151 – Lecture 8

Chapter 5
Synchronization

ECE151 – Lecture 8 2

Mutual Exclusion
Problem: A number of processes in a distributed

system want exclusive access to some resource.
Basic solutions:
 Via a centralized server.
 Completely distributed, with no topology imposed.
 Completely distributed, making use of a (logical)

ring.

ECE151 – Lecture 8 3

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when
then replies to 2

ECE151 – Lecture 8 4

Mutual Exclusion: Ricart & Agrawala
Principle: The same as Lamport except that

acknowledgments aren’t sent. Instead, replies (i.e.
grants) are sent only when:

 The receiving process has no interest in the shared
resource; or

 The receiving process is waiting for the resource, but
has lower priority (known through comparison of
timestamps).

In all other cases, reply is deferred, implying some
more local administration.

ECE151 – Lecture 8 5

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter

the critical region.

ECE151 – Lecture 8 6

A Token Ring Algorithm

a) An unordered group of processes on a network.
b) A logical ring constructed in software.

Essence: Organize processes in a logical ring,
and let a token be passed between them.
The one that holds the token is allowed to
enter the critical region (if it wants to)

ECE151 – Lecture 8 7

Comparison

A comparison of three mutual exclusion algorithms.

Lost token,
process crash0 to n – 11 to ∞Token ring

Crash of any
process2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

ProblemsDelay before entry
(in message times)

Messages per
entry/exitAlgorithm

ECE151 – Lecture 8 8

Distributed Transactions
 The transaction model
 Classification of transactions
 Concurrency control

ECE151 – Lecture 8 9

The Transaction Model
Updating a master tape is fault tolerant.

ECE151 – Lecture 8 10

The Transaction Model
Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

ECE151 – Lecture 8 11

The Transaction Model

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

Essential: All READ and WRITE operations are executed,
i.e. their effects are made permanent at the execution of

END_TRANSACTION .
Observation: Transactions form an atomic operation.

BEGIN_TRANSACTION
 reserve WP -> JFK;
 reserve JFK -> Nairobi;
 reserve Nairobi -> Malindi full =>
ABORT_TRANSACTION
 (b)

BEGIN_TRANSACTION
 reserve WP -> JFK;
 reserve JFK -> Nairobi;
 reserve Nairobi -> Malindi;
END_TRANSACTION
 (a)

ECE151 – Lecture 8 12

ACID Properties
Model: A transaction is a collection of operations on the state of an

object (database, object composition, etc.) that satisfies the following
properties:

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does
not exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It
appears to each transaction T that other transactions occur either
before T, or after T, but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

ECE151 – Lecture 8 13

Transaction Classification
Flat transactions: The most familiar one: a sequence

of operations that satisfies the ACID properties.
Nested transactions: A hierarchy of transactions that

allows (1) concurrent processing of subtransactions,
and (2) recovery per subtransaction.

Distributed transactions: A (flat) transaction that is
executed on distributed data often implemented as a
two-level nested transaction with one subtransaction
per node.

ECE151 – Lecture 8 14

Distributed Transactions
a) A nested transaction
b) A distributed transaction

ECE151 – Lecture 8 15

Flat Transactions: Limitations
Problem: Flat transactions constitute a very simple and clean

model for dealing with a sequence of operations that
satisfies the ACID properties. However, after a series of
successful operations all changes should be undone in the
case of failure. Sometimes unnecessary:

Trip planning. Plan a intercontinental trip where all flights
have been reserved, but filling in the last part requires some
“experimentation.” The first reservations are known to be in
order, but cannot yet be committed.

Bulk updates. When updating bank accounts for monthly
interests we have to lock the entire database (every account
should be updated exactly once: it is a transaction over the
entire database.)

Better: each update is immediately committed. However, in
the case of failure, we’ll have to be able to continue where
we left off.

ECE151 – Lecture 8 16

Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and

appended block 3
c) After committing

Solution 1: Use a private workspace, by which the client gets its own
copy of the (part of the) database. When things go wrong delete copy,
otherwise commit the changes to the original.
Optimization: don’t get everything:

ECE151 – Lecture 8 17

Writeahead Log

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

 (d)

Log

[x = 0 / 1]
[y = 0/2]

 (c)

Log

[x = 0 / 1]

 (b)

x = 0;
y = 0;
BEGIN_TRANSACTION;
 x = x + 1;
 y = y + 2
 x = y * y;
END_TRANSACTION;
 (a)

Solution 2: Use a writeahead log in which changes
are recorded allowing you to roll back when things
go wrong:

ECE151 – Lecture 8 18

Concurrency Control
Problem: Increase efficiency by allowing several transactions to
execute at the same time.
Constraint: Effect should be the same as if the transactions were
executed in some serial order.

Question: Does it actually
make sense to allow
concurrent transactions
on a single server?

General organization of managers for handling transactions.

ECE151 – Lecture 8 19

Concurrency Control

General organization of
managers for handling
distributed transactions.

Question:
What about a
distributed
transaction
manager?

ECE151 – Lecture 8 20

Serializability
Consider a collection E of transactions T1, … Tn.
Goal is to conduct a serializable execution of E:
 Transactions in E are possibly concurrently executed

according to some schedule S.
 Schedule S is equivalent to some totally ordered

execution of T1, … Tn.

ECE151 – Lecture 8 21

Serializability

a) – c) Three transactions T1, T2, and T3
d) Possible schedules

BEGIN_TRANSACTION
 x = 0;
 x = x + 3;
END_TRANSACTION

 (c)

BEGIN_TRANSACTION
 x = 0;
 x = x + 2;
END_TRANSACTION

 (b)

BEGIN_TRANSACTION
 x = 0;
 x = x + 1;
END_TRANSACTION

 (a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

ECE151 – Lecture 8 22

Serializability
Note: Because we’re not concerned with the

computations of each transaction, a transaction can
be modeled as a log of read and write operations.

Two operations Op(Ti, x) and Op(Tj, x) on the same
data item x, and from a set of logs may conflict at a
data manager:

read-write conflict (rw): One is a read operation
while the other is a write operation on x.

write-write conflict (ww): Both are write operations
on x.

ECE151 – Lecture 8 23

Basic Scheduling Theorem
Let T = {T1, … Tn} be a set of transactions and

let E be an execution of these transactions
modeled by logs {L1, … Ln}.

E is serializable
if there exists a total ordering of T such that
for each pair of conflicting operations Oi and Oj
from distinct transactions Ti and Tj (respectively),

Oi precedes Oj in any log L1, … Ln,
if and only if
Ti precedes Tj in the total ordering.

ECE151 – Lecture 8 24

Basic Scheduling Theorem
Note: The important thing is that we process

conflicting reads and writes in certain relative
orders. This is what concurrency control is all about.

Note: It turns out that read-write and write-write
conflicts can be synchronized independently,
as long as we stick to a total ordering of transactions
that is consistent with both types of conflicts.

ECE151 – Lecture 8 25

Synchronization Techniques
Two-phase locking: Before reading or writing a data item,

a lockmust be obtained. After a lock is given up,
the transaction is not allowed to acquire any more locks.

Timestamp ordering: Operations in a transaction are
timestamped, and data managers are forced to handle
operations in timestamp order.

Optimistic control: Don’t prevent things from going wrong,
but correct the situation if conflicts actually did happen.
Basic assumption: you can pull it off in most cases.

ECE151 – Lecture 8 26

Two-phase Locking
 Clients do only READ and WRITE operations within

transactions.
 Locks are granted and released only by scheduler.
 Locking policy is to avoid conflicts between

operations

ECE151 – Lecture 8 27

Two-phase Locking
 Rule 1: When client submits Op(Ti,x), scheduler tests

whether it conflicts with an operation Op(Tj,x) from some
other client. If no conflict then grant Op(Ti,x), otherwise
delay execution of Op(Ti,x).

Conflicting operations are executed in the same order as that
locks are granted.

 Rule 2: If Op(Ti,x) has been granted, do not release the lock
until Op(Ti,x) has been executed by data manager.

Guarantees LOCK => Op => RELEASE order.
 Rule 3: If RELEASE(Ti,x) has taken place, no more locks

for Ti may be granted.
Combined with rule 1, guarantees that all pairs of conflicting

operations of two transactions are done in the same order.

ECE151 – Lecture 8 28

Two-Phase Locking

Centralized 2PL: A single site handles all locks
Primary 2PL: Each data item is assigned a primary site to handle its

locks. Data is not necessarily replicated
Distributed 2PL: Assumes data can be replicated. Each primary is

responsible for handling locks for its data, which may reside at remote
data managers.

ECE151 – Lecture 8 29

Two-phase Locking: Problems
Problem 1: System can come into a deadlock. How?
Practical solution: put a timeout on locks and abort transaction on

expiration.
Problem 2: When should the scheduler actually release a lock:

(1) when operation has been executed
(2) when it knows that no more locks will be requested

No good way of testing condition (2) unless transaction has been
committed or aborted.

Moreover: Assume the following execution sequence takes place:
RELEASE(Ti,x) => LOCK(Tj,x) => ABORT(Ti).

Consequence: scheduler will have to abort Tj as well
(cascaded aborts).

Solution: Release all locks only at commit/abort time
(strict two-phase locking).

ECE151 – Lecture 8 30

Two-Phase Locking
Strict two-phase locking.

ECE151 – Lecture 8 31

Timestamp Ordering
Basic idea:
 Transaction manager assigns a unique timestamp

TS(Ti) to each transaction Ti.
 Each operation Op(Ti,x) submitted by the transaction

manager to the scheduler is timestamped
TS(Op(Ti,x)) = TS(Ti).

Scheduler adheres to following rule:
If Op(Ti,x) and Op(Tj,x) conflict
then data manager processes

Op(Ti,x) before Op(Tj,x)
 iff TS(Op(Ti,x)) < TS(Op(Tj,x))
Note: rather aggressive since

if a single Op(Ti,x) is rejected, Ti will have to be aborted.

ECE151 – Lecture 8 32

Timestamp Ordering
Suppose: TS(Op(Ti,x) < TS(Op(Tj,x)), but that

Op(Tj,x) has already been processed by the data manager.
 Then: the scheduler rejects Op(Ti,x), as it came in too late.

 Suppose: TS(Op(Ti,x)) < TS(Op(Tj,x)), and that
Op(Ti,x) has already been processed by the data manager.

 Then: the scheduler would submit Op(Tj,x) to data manager.
 Refinement: hold back Op(Tj,x) until Ti commits or aborts.

Question: Why would we do this?

ECE151 – Lecture 8 33

Pessimistic Timestamp Ordering
Concurrency control using timestamps.

ECE151 – Lecture 8 34

Optimistic Concurrency Control
Observation: (1) Maintaining locks costs a lot;

(2) In practice not many conflicts.
Alternative: Go ahead immediately with all operations,

use tentative writes everywhere (shadow copies), and
solve conflicts later on.

Phases: allow operations
tentatively validate effects
make updates permanent.

Validation: Check two basic rules
for each pair of active transactions Ti and Tj:

 Rule 1: Ti must not read or write data that has been written by Tj.
 Rule 2: Tj must not read or write data that has been written by Ti.
If one of the rules doesn’t hold: abort one of the transactions.

