
ECE151 – Lecture 9 1

ECE151 – Lecture 9

Chapter 6
Consistency and Replication

ECE151 – Lecture 9 2

Consistency & Replication
 Introduction
 Data-centric consistency
 Client-centric consistency
 Distribution protocols
 Consistency protocols
 Examples

ECE151 – Lecture 9 3

Object Replication
Organization of a distributed remote object

shared by two different clients.

Problem: If objects (or data) are shared, we need to
do something about concurrent accesses to guarantee

state consistency.

ECE151 – Lecture 9 4

Object Replication
a) A remote object capable of handling concurrent invocations on its own.
b) A remote object for which an object adapter is required to handle

concurrent invocations

Problem: Is the
remote object
already thread-
safe or not?

ECE151 – Lecture 9 5

Object Replication

a) A distributed system for replication-aware distributed objects.
b) A distributed system responsible for replica management

Problem: Should we seek for object-specific solutions,
or generally applicable ones?
Question: Why would we want object-specific replication
protocols?

ECE151 – Lecture 9 6

Performance and Scalability
Main issue: To keep replicas consistent, we generally need

to ensure that all conflicting operations are done in the the
same order everywhere

Conflicting operations: From the world of transactions:
 Read–write conflict: a read operation and a write operation

act concurrently
 Write–write conflicts: two concurrent write operations

Guaranteeing global ordering on conflicting operations
may be a costly operation, downgrading scalability

Solution: weaken consistency requirements so that hopefully
global synchronization can be avoided

ECE151 – Lecture 9 7

Data-Centric Consistency Models
The general organization of a logical data store, physically distributed
and replicated across multiple processes.

Consistency model: a contract between a (distributed) data store and
processes, in which the data store specifies precisely what the results
of read and write operations are in the presence of concurrency.

Essence: A data store is a distributed collection of storages accessible to
clients:

ECE151 – Lecture 9 8

Data-Centric Consistency Models
Strong consistency models: Operations on shared data are

synchronized:
 Strict consistency (related to time)
 Sequential consistency (what we are used to)
 Causal consistency (maintains only causal relations)
 FIFO consistency (maintains only individual ordering)
Weak consistency models: Synchronization occurs only

when shared data is locked and unlocked:
 General weak consistency
 Release consistency
 Entry consistency
Observation: The weaker the consistency model, the easier it

is to build a scalable solution.

ECE151 – Lecture 9 9

Strict Consistency
Any read to a shared data item X returns the value stored by the
most recent write operation on X.
Observation: It doesn’t make sense to talk about “the most recent”
in a distributed environment.

Behavior of two processes, operating on the same data item.
• A strictly consistent store.
• A store that is not strictly consistent.

 Assume all data items have been initialized to NIL
 W(x)a: value a is written to x
 R(x)a: reading x returns the value a
Note: Strict consistency is what you get in the normal sequential
case, where your program does not interfere with any other program.

ECE151 – Lecture 9 10

Linearizability and Sequential Consistency

a) A sequentially consistent data store.
b) A data store that is not sequentially consistent.

Linearizable: Sequential plus operations are ordered
according to a global time.

The result of any execution is the same as if the operations of
all processes were executed in some sequential order, and
the operations of each individual process appear in this
sequence in the order specified by its program.
Note: We’re talking about interleaved executions: there is
some total ordering for all operations taken together.

ECE151 – Lecture 9 11

Linearizability and Sequential Consistency

Three concurrently executing processes.

z = 1;
print (x, y);

y = 1;
print (x, z);

x = 1;
print (y, z);

Process P3Process P2Process P1

ECE151 – Lecture 9 12

Linearizability and Sequential Consistency

Four valid execution sequences for the processes of
the previous slide. The vertical axis is time.

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
 111111
 (d)

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
 110101
 (c)

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
 101011
 (b)

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints: 001011

Signature:
 001011
 (a)

ECE151 – Lecture 9 13

Casual Consistency

Necessary condition:
Writes that are potentially casually
related must be seen by all processes
in the same order. Concurrent
writes may be seen in a different
order on different machines.

ECE151 – Lecture 9 14

Casual Consistency

This sequence is allowed with a casually-consistent store, but
not with sequentially or strictly consistent store.

ECE151 – Lecture 9 15

Casual Consistency

a) A violation of a casually-consistent store.
b) A correct sequence of events in a casually-consistent store.

ECE151 – Lecture 9 16

FIFO Consistency

Necessary Condition:
Writes done by a single process are seen
by all other processes in the order in
which they were issued, but writes from
different processes may be seen in a
different order by different processes.

ECE151 – Lecture 9 17

FIFO Consistency

A valid sequence of events of FIFO consistency

ECE151 – Lecture 9 18

FIFO Consistency

Statement execution as seen by the three processes from the
previous slide. The statements in bold are the ones that
generate the output shown.

y = 1;
print (x, z);
z = 1;
print (x, y);
x = 1;
print (y, z);

Prints: 01

 (c)

x = 1;
y = 1;
print(x, z);
print (y, z);
z = 1;
print (x, y);

Prints: 10

 (b)

x = 1;
print (y, z);
y = 1;
print(x, z);
z = 1;
print (x, y);

Prints: 00

 (a)

ECE151 – Lecture 9 19

FIFO Consistency

Two concurrent processes.

y = 1;
if (x == 0) kill (P1);

x = 1;
if (y == 0) kill (P2);

Process P2Process P1

ECE151 – Lecture 9 20

Weak Consistency

Properties:
• Accesses to synchronization variables associated with a

data store are sequentially consistent
• No operation on a synchronization variable is allowed to

be performed until all previous writes have been completed
everywhere

• No read or write operation on data items are allowed to be
performed until all previous operations to synchronization
variables have been performed.

Basic idea: You don’t care that reads and writes of a series
of operations are immediately known to other processes.
You just want the effect of the series itself to be known.

ECE151 – Lecture 9 21

Weak Consistency

A program fragment in which some variables may be
kept in registers.

int a, b, c, d, e, x, y; /* variables */
int *p, *q; /* pointers */
int f(int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */
b = y * y; /* b as well */
c = a*a*a + b*b + a * b; /* used later */
d = a * a * c; /* used later */
p = &a; /* p gets address of a */
q = &b /* q gets address of b */
e = f(p, q) /* function call */

ECE151 – Lecture 9 22

Weak Consistency (3)

a) A valid sequence of events for weak
consistency.

b) An invalid sequence for weak consistency.

ECE151 – Lecture 9 23

Release Consistency

A valid event sequence for release consistency.

Idea: Divide access to a synchronization variable into
two parts: an acquire and a release phase.
Acquire forces a requester to wait until the shared data
can be accessed
Release sends requester’s local value to other servers in
data store.

ECE151 – Lecture 9 24

Release Consistency

Rules:
• Before a read or write operation on shared data

is performed, all previous acquires done by the
process must have completed successfully.

• Before a release is allowed to be performed, all
previous reads and writes by the process must
have completed

• Accesses to synchronization variables are FIFO
consistent (sequential consistency is not
required).

ECE151 – Lecture 9 25

Entry Consistency
 With release consistency, all local updates are propagated to

other copies/servers during release of shared data.
 With entry consistency, each shared data item is associated

with a synchronization variable.
 When acquiring the synchronization variable, the most recent

values of its associated shared data item are fetched.
Note: Where release consistency affects all shared data,

entry consistency affects only those shared data associated
with a synchronization variable.

Question: What would be a convenient way of making entry
consistency more or less transparent to programmers?

ECE151 – Lecture 9 26

Entry Consistency
Conditions:
• An acquire access of a synchronization variable is not allowed

to perform with respect to a process until all updates to the
guarded shared data have been performed with respect to that
process.

• Before an exclusive mode access to a synchronization variable
by a process is allowed to perform with respect to that process,
no other process may hold the synchronization variable, not
even in nonexclusive mode.

• After an exclusive mode access to a synchronization variable
has been performed, any other process's next nonexclusive
mode access to that synchronization variable may not be
performed until it has performed with respect to that variable's
owner.

ECE151 – Lecture 9 27

Entry Consistency (1)

A valid event sequence for entry consistency.

ECE151 – Lecture 9 28

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Summary of Consistency Models

