
ECE151 – Lecture 11

ECE151 – Lecture 11

Chapter 7
Fault Tolerance

ECE151 – Lecture 11

Basic Concepts
 Process resilience
 Reliable client-server communication
 Reliable group communication
 Distributed commit
 Recovery

ECE151 – Lecture 11

Dependability
Basics: A component provides services to clients. To provide

services, the component may require the services from other
components a component may depend on some other
component.

Specifically: A component C depends on C* if the
correctness of C’s behavior depends on the correctness
of C*’s behavior.

Some properties of dependability:
Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired

Note: For distributed systems, components can be either
processes or channels

ECE151 – Lecture 11

Terminology
Failure: When a component is not living up to its

specifications, a failure occurs
Error: That part of a component’s state that can lead to a

failure
Fault: The cause of an error

Fault prevention: prevent the occurrence of a fault
Fault tolerance: build a component in such a way that it can

meet its specifications in the presence of faults
(i.e., mask the presence of faults)

Fault removal: reduce the presence, number, seriousness of
faults

Fault forecasting: estimate the present number, future
incidence, and the consequences of faults

ECE151 – Lecture 11

Failure Models
Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Response failure
 Value failure
 State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Omission failure
 Receive omission
 Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure

ECE151 – Lecture 11

Crash Failures
Problem: Clients cannot distinguish between a crashed

component and one that is just a bit slow
Examples: Consider a server from which a client is exepcting

output:
 Is the server perhaps exhibiting timing or omission failures
 Is the channel between client and server faulty

(crashed, or exhibiting timing or omission failures)
Fail-silent: The component exhibits omission or crash

failures; clients cannot tell what went wrong
Fail-stop: The component exhibits crash failures, but its

failure can be detected (either through announcement or
timeouts)

Fail-safe: The component exhibits arbitrary, but benign
failures (they can’t do any harm)

ECE151 – Lecture 11

Process Resilience
Basic issue: Protect yourself against faulty processes by replicating and

distributing computations in a group.
Flat groups: Good for fault tolerance as information exchange

immediately occurs with all group members; however, may impose
more overhead as control is completely distributed (hard to
implement).

Hierarchical groups: All communication through a single coordinator
Not really fault tolerant and scalable, but relatively easy to implement.

ECE151 – Lecture 11

Groups and Failure Masking
Terminology: when a group can mask any k concurrent

member failures, it is said to be k-fault tolerant
(k is called degree of fault tolerance or resiliance).

Problem: how large does a k-fault tolerant group need to be?
 Assume crash/performance failure semantics => a total of

k+1 members are needed to survive k member failures.
 Assume arbitrary failure semantics, and group output defined

by voting => a total of 2k+1 members are needed to survive
k member failures.

Assumption: all members are identical, and process all input
in the same order. Only then are we sure that they do
exactly the same thing.

ECE151 – Lecture 11

Failure Masking by Redundancy
Triple modular redundancy.

ECE151 – Lecture 11

Groups and Failure Masking
Assumption: Group members are not identical, i.e.,

we have a distributed computation
Problem: Nonfaulty group members should reach

agreement on the same value
Observation: Assuming arbitrary failure semantics,

we need 3k+1 group members to survive the attacks
of k faulty members

Note: This is also known as Byzantine failures.
Essence: We are trying to reach a majority vote

among the group of loyalists, in the presence of k
traitors need 2k+1 loyalists.

ECE151 – Lecture 11

Agreement in Faulty Systems

The Byzantine generals problem for 3 loyal generals and1 traitor.
a) The generals announce their troop strengths (in units of 1

kilosoldiers).
b) The vectors that each general assembles based on (a)
c) The vectors that each general receives in step 3.

ECE151 – Lecture 11

Agreement in Faulty Systems

The same as in previous slide, except now
with 2 loyal generals and one traitor.

ECE151 – Lecture 11

Reliable Communication
So far: Concentrated on process resilience (by means of

process groups). What about reliable communication
channels?

Error detection:
 Framing of packets to allow for bit error detection
 Use of frame numbering to detect packet loss
Error correction:
 Add so much redundancy that corrupted packets can be

automatically corrected
 Request retransmission of lost, or last N packets
Observation: Most of this work assumes point-to-point

communication

ECE151 – Lecture 11

Reliable RPC
What can go wrong?:
1: Client cannot locate server
2: Client request is lost
3: Server crashes
4: Server response is lost
5: Client crashes

[1:] Relatively simple – just report back to client
[2:] Just resend message

ECE151 – Lecture 11

Server Crashes
[3:] Server crashes are harder as you don’t what it had already done:

A server in client-server communication
a) Normal case
b) Crash after execution
c) Crash before execution

We need to decide on what we expect from the server
 At-least-once-semantics: The server guarantees it will

carry out an operation at least once, no matter what
 At-most-once-semantics: The server guarantees it will

carry out an operation at most once.

ECE151 – Lecture 11

Reliable RPC
[4:] Detecting lost replies can be hard, because it can also be

that the server had crashed. You don’t know whether the
server has carried out the operation

Solution: None, except that you can try to make your
operations idempotent: repeatable without any harm
done if it happened to be carried out before.

[5:] Problem: The server is doing work and holding resources
for nothing (called doing an orphan computation).

 Orphan is killed (or rolled back) by client when it reboots
 Broadcast new epoch number when recovering servers kill

orphans
 Require computations to complete in a T time units. Old ones

are simply removed.

ECE151 – Lecture 11

Server Crashes

Different combinations of client and server strategies in the
presence of server crashes.

DUP

OK

OK

DUP

PC(M)

OK

DUP

OK

DUP

PMC

Strategy P -> M

OK

ZERO

ZERO

OK

C(MP)

Server

OKZEROOKOnly when not ACKed

ZEROOKDUPOnly when ACKed

ZEROZEROOKNever

OKOKDUPAlways

C(PM)MC(P)MPCReissue strategy

Strategy M -> P

Client

ECE151 – Lecture 11

Reliable Multicasting
Basic model: We have a multicast channel c with two

(possibly overlapping) groups:
 The sender group SND(c) of processes that submit messages

to channel c
 The receiver group RCV(c) of processes that can receive

messages from channel c
Simple reliability: If process P is in RCV(c) at the time

message m was submitted to c and P does not leave RCV(c),
m should be delivered to P

Atomic multicast: How can we ensure that a message m
submitted to channel c is delivered to process P in RCV(c)
only if m is delivered to all members of RCV(c)

ECE151 – Lecture 11

Reliable Multicasting
Observation: If we can stick to a local-area network,

reliable multicasting is “easy”
Principle: Let the sender log messages submitted to

channel c:
 If P sends message m, m is stored in a history buffer
 Each receiver acknowledges the receipt of m,

or requests retransmission by P when the receiver
notices that a message was lost

 Sender P removes m from history buffer when
everyone has acknowledged receipt

Question: Why doesn’t this scale?

ECE151 – Lecture 11

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all
receivers are known and are assumed not to fail

a) Message transmission
b) Reporting feedback

ECE151 – Lecture 11

Feedback Suppression
Basic idea: Let a process P suppress its own feedback

when it notices another process Q is already asking
for a retransmission

Assumptions:
 All receivers listen to a common feedback channel to

which feedback messages are submitted
 Process P schedules its own feedback message

randomly, and suppresses it when observing another
feedback message

Question: Why is the random schedule so important?

ECE151 – Lecture 11

Feedback Suppression

Several receivers have scheduled a request for
retransmission, but the first retransmission request

leads to the suppression of others.

ECE151 – Lecture 11

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.
a) Each local coordinator forwards the message to its children.
b) A local coordinator handles retransmission requests.

Basic solution: Construct an
hierarchical feedback channel in
which all submitted messages
are sent only to the root.
Intermediate nodes aggregate
feedback messages before
passing them on.

ECE151 – Lecture 11

Virtual Synchrony
The logical organization of a distributed system to

distinguish between message receipt and message
delivery

Idea: Formulate reliable multicasting in the presence of
process failures in terms of process groups and changes
to group membership:

ECE151 – Lecture 11

Virtual Synchrony

The principle of virtual synchronous multicast.

Guarantee: A message is delivered only to the nonfaulty
members of the current group. All members should agree
on the current group membership.

ECE151 – Lecture 11

Message Ordering

Three communicating processes in the same group.
The ordering of events per process is shown along
the vertical axis.

receives m1receives m2sends m2

receives m2receives m1sends m1

Process P3Process P2Process P1

ECE151 – Lecture 11

Message Ordering

Four processes in the same group with two different
senders, and a possible delivery order of messages

under FIFO-ordered multicasting

receives m4receives m4

receives m2receives m2

sends m4receives m1receives m3sends m2

sends m3receives m3receives m1sends m1

Process P4Process P3Process P2Process P1

ECE151 – Lecture 11

Virtual Synchrony
Essence: We consider views V ⊆ RCV(c) ∪ SND(c)
Processes are added or deleted from a viewV through view changes

to V*; a view change is executed locally by each P ∈ V ∩ V*
(1) For each consistent state, there is a unique view on which all its

members agree. Note: implies that all nonfaulty processes see all
view changes in the same order

(2) If message m is sent to V before a view change vc to V*, then
either all P ∈ V that excute vc receive m, or no processes P ∈ V
that execute vc receive m. Note: all nonfaulty members in the
same view get to see the same set of multicast messages.

(3) A message sent to view V can be delivered only to processes in
V, and is discarded by successive views

A reliable multicast algorithm satisfying (1)–(3) is virtually
synchronous

ECE151 – Lecture 11

Virtual Synchrony
 A sender to a view V need not be member of V
 If a sender S ∈ V crashes, its multicast message m is flushed

before S is removed from V: m will never be delivered after
the point that S ∉ V

Note: Messages from S may still be delivered to all, or none
(nonfaulty) processes in V before they all agree on a new
view to which S does not belong

 If a receiver P fails, a message m may be lost but can be
recovered as we know exactly what has been received in V.
Or we may decide to deliver m to members in V - P

Observation: Virtually synchronous behavior can be seen
independent from the ordering of message delivery.

The only issue is that messages are delivered to an agreed
upon group of receivers.

ECE151 – Lecture 11

Virtual Synchrony Implementation
The current view is known at each P by means of a delivery

list DEST[P]
 If P ∈ DEST[P] then Q ∈ DEST[P]
 Messages received by P are queued in QUEUE[P]
 If P fails, the group view must change, but not before all

messages from P have been flushed
 Each P attaches a (stepwise increasing) timestamp with each

message it sends
 Assume FIFO-ordered delivery; the highest numbered

message from Q that has been received by P is recorded in
RCVD[P]

 The vector RCVD[P] is sent (as a control message) to all
members in DEST[P]

 Each P records RCVD[P] in REMOTE[P][Q]

ECE151 – Lecture 11

Virtual Synchrony Implementation
Observation: REMOTE[P][Q] shows what P knows about

message arrival at Q
1 2 3 1 5
2 2 2 2 4
3 3 1 4 5
4 4 2 2 4
min 2 1 1 4

A message is stable if it has been received by all Q
(shown as the min vector)

Stable messages can be delivered to the next layer (which may
deal with ordering). Note: Causal message delivery is free

As soon as all messages from the faulty process have been
flushed, that process can be removed from the (local) views

ECE151 – Lecture 11

Virtual Synchrony Implementation
Remains: What if a sender P failed and not all its

messages made it to the nonfaulty members of the
current view?

Solution: Select a coordinator which has all (unstable)
messages from P, and forward those to the other
group members.

Note: Member failure is assumed to be detected and
subsequently multicast to the current view as a view
change. That view change will not be carried out
before all messages in the current view have been
delivered.

ECE151 – Lecture 11

Implementing Virtual Synchrony
Six different versions of virtually
synchronous reliable multicasting.

YesCausal-ordered deliveryCausal atomic multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered Delivery?Basic Message OrderingMulticast

