
ECE151 – Lecture 12

ECE151 – Lecture 12

Chapter 7
Fault Tolerance

ECE151 – Lecture 12

Virtual Synchrony

The principle of virtual synchronous multicast.

Guarantee: A message is delivered only to the nonfaulty
members of the current group. All members should agree
on the current group membership.

ECE151 – Lecture 12

Message Ordering

Three communicating processes in the same group.
The ordering of events per process is shown along
the vertical axis.

receives m1receives m2sends m2

receives m2receives m1sends m1

Process P3Process P2Process P1

ECE151 – Lecture 12

Message Ordering

Four processes in the same group with two different
senders, and a possible delivery order of messages

under FIFO-ordered multicasting

receives m4receives m4

receives m2receives m2

sends m4receives m1receives m3sends m2

sends m3receives m3receives m1sends m1

Process P4Process P3Process P2Process P1

ECE151 – Lecture 12

Virtual Synchrony
Essence: We consider views V ⊆ RCV(c) ∪ SND(c)
Processes are added or deleted from a viewV through view changes

to V*; a view change is executed locally by each P ∈ V ∩ V*
(1) For each consistent state, there is a unique view on which all its

members agree. Note: implies that all nonfaulty processes see all
view changes in the same order

(2) If message m is sent to V before a view change vc to V*, then
either all P ∈ V that excute vc receive m, or no processes P ∈ V
that execute vc receive m. Note: all nonfaulty members in the
same view get to see the same set of multicast messages.

(3) A message sent to view V can be delivered only to processes in
V, and is discarded by successive views

A reliable multicast algorithm satisfying (1)–(3) is virtually
synchronous

ECE151 – Lecture 12

Virtual Synchrony
 A sender to a view V need not be member of V
 If a sender S ∈ V crashes, its multicast message m is flushed

before S is removed from V: m will never be delivered after
the point that S ∉ V

Note: Messages from S may still be delivered to all, or none
(nonfaulty) processes in V before they all agree on a new
view to which S does not belong

 If a receiver P fails, a message m may be lost but can be
recovered as we know exactly what has been received in V.
Or we may decide to deliver m to members in V - P

Observation: Virtually synchronous behavior can be seen
independent from the ordering of message delivery.

The only issue is that messages are delivered to an agreed
upon group of receivers.

ECE151 – Lecture 12

Virtual Synchrony Implementation
The current view is known at each P by means of a delivery

list DEST[P]
 If P ∈ DEST[P] then Q ∈ DEST[P]
 Messages received by P are queued in QUEUE[P]
 If P fails, the group view must change, but not before all

messages from P have been flushed
 Each P attaches a (stepwise increasing) timestamp with each

message it sends
 Assume FIFO-ordered delivery; the highest numbered

message from Q that has been received by P is recorded in
RCVD[P]

 The vector RCVD[P] is sent (as a control message) to all
members in DEST[P]

 Each P records RCVD[P] in REMOTE[P][Q]

ECE151 – Lecture 12

Virtual Synchrony Implementation
Observation: REMOTE[P][Q] shows what P knows about

message arrival at Q
1 2 3 1 5
2 2 2 2 4
3 3 1 4 5
4 4 2 2 4
min 2 1 1 4

A message is stable if it has been received by all Q
(shown as the min vector)

Stable messages can be delivered to the next layer (which may
deal with ordering). Note: Causal message delivery is free

As soon as all messages from the faulty process have been
flushed, that process can be removed from the (local) views

ECE151 – Lecture 12

Virtual Synchrony Implementation
Remains: What if a sender P failed and not all its

messages made it to the nonfaulty members of the
current view?

Solution: Select a coordinator which has all (unstable)
messages from P, and forward those to the other
group members.

Note: Member failure is assumed to be detected and
subsequently multicast to the current view as a view
change. That view change will not be carried out
before all messages in the current view have been
delivered.

ECE151 – Lecture 12

Implementing Virtual Synchrony (2)

a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from

everyone else

ECE151 – Lecture 12

Implementing Virtual Synchrony
Six different versions of virtually
synchronous reliable multicasting.

YesCausal-ordered deliveryCausal atomic multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered Delivery?Basic Message OrderingMulticast

ECE151 – Lecture 12

Distributed Commit
 Two-phase commit
 Three-phase commit
Essential issue: Given a computation distributed

across a process group, how can we ensure that
either all processes commit to the final result, or
none of them do (atomicity)?

ECE151 – Lecture 12

Two-Phase Commit
Model: The client who inititated the computation acts as

coordinator; processes required to commit are the
participants

Phase 1a: Coordinator sends VOTE_REQUEST to
participants (also called a pre-write)

Phase 1b: When participant receives VOTE_REQUEST
it returns either YES or NO to coordinator.
If it sends NO, it aborts its local computation

Phase 2a: Coordinator collects all votes;
if all are YES, it sends COMMIT to all participants,
otherwise it sends ABORT

Phase 2b: Each participant waits for COMMIT or ABORT
and handles accordingly.

ECE151 – Lecture 12

Two-Phase Commit

a) The finite state machine for the coordinator in 2PC.
b) The finite state machine for a participant.

ECE151 – Lecture 12

Two-Phase Commit

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

Contact another participantREADY

Make transition to ABORTINIT

Make transition to ABORTABORT

Make transition to COMMITCOMMIT

Action by PState of Q

ECE151 – Lecture 12

Two-Phase Commit

Outline of the steps taken by the coordinator
in a two phase commit protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
 wait for any incoming vote;
 if timeout {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
 exit;
 }
 record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
 write GLOBAL_COMMIT to local log;
 multicast GLOBAL_COMMIT to all participants;
} else {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
}

ECE151 – Lecture 12

Two-Phase Commit

Steps taken by
participant
process in

2PC.

actions by participant:
write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {
 write VOTE_ABORT to local log;
 exit;
}
if participant votes COMMIT {
 write VOTE_COMMIT to local log;
 send VOTE_COMMIT to coordinator;
 wait for DECISION from coordinator;
 if timeout {
 multicast DECISION_REQUEST to other participants;
 wait until DECISION is received; /* remain blocked */
 write DECISION to local log;
 }
 if DECISION == GLOBAL_COMMIT
 write GLOBAL_COMMIT to local log;
 else if DECISION == GLOBAL_ABORT
 write GLOBAL_ABORT to local log;
} else {
 write VOTE_ABORT to local log;
 send VOTE ABORT to coordinator;
}

ECE151 – Lecture 12

Two-Phase Commit

Steps taken for handling incoming decision requests.

actions for handling decision requests: /* executed by separate thread */

while true {
 wait until any incoming DECISION_REQUEST is received; /* remain blocked */
 read most recently recorded STATE from the local log;
 if STATE == GLOBAL_COMMIT
 send GLOBAL_COMMIT to requesting participant;
 else if STATE == INIT or STATE == GLOBAL_ABORT
 send GLOBAL_ABORT to requesting participant;
 else
 skip; /* participant remains blocked */

ECE151 – Lecture 12

2PC – Failing Participant
Observation: Consider participant crash in one of its states,

and the subsequent recovery to that state:
Initial state: No problem, as participant was unaware of the

protocol
Ready state: Participant is waiting to either commit or abort.

After recovery, participant needs to know which state
transition it should make => log the coordinator’s decision

Abort state: Merely make entry into abort state idempotent,
e.g., removing the workspace of results

Commit state: Also make entry into commit state idempotent,
e.g., copying workspace to storage.

Observation: When distributed commit is required, having
participants use temporary workspaces to keep their results
allows for simple recovery in the presence of failures.

ECE151 – Lecture 12

2PC – Failing Coordinator
Observation: The real problem lies in the fact that the

coordinator’s final decision may not be available for some
time (or actually lost)

Alternative: Let a participant P in the ready state timeout
when it hasn’t received the coordinator’s decision;
P tries to find out what other participants know.

Question: Can P not succeed in getting the required
information?

Observation: Essence of the problem is that a recovering
participant cannot make a local decision: it is dependent on
other (possibly failed) processes

ECE151 – Lecture 12

Three-Phase Commit
Phase 1a: Coordinator sends VOTE_REQUEST to

participants
Phase 1b: When participant receives VOTE_REQUEST

it returns either YES or NO to coordinator.
If it sends NO, it aborts its local computation

Phase 2a: Coordinator collects all votes;
if all are YES, it sends PREPARE to all participants,
otherwise it sends ABORT, and halts

Phase 2b: Each participant waits for PREPARE,
or waits for ABORT after which it halts

Phase 3a: (Prepare to commit) Coordinator waits until all
participants have ACKed receipt of PREPARE message,
and then sends COMMIT to all

Phase 3b: (Prepare to commit) Participant waits for COMMIT

ECE151 – Lecture 12

Three-Phase Commit

a) Finite state machine for the coordinator in 3PC
b) Finite state machine for a participant

ECE151 – Lecture 12

3PC – Failing Participant
Basic issue: Can P find out what it should it do after crashing

in the ready or pre-commit state, even if other participants
or the coordinator failed?

Essence: Coordinator and participants on their way to commit,
never differ by more than one state transition

Consequence: If a participant timeouts in ready state, it can
find out at the coordinator or other participants whether it
should abort, or enter pre-commit state

Observation: If a participant already made it to the pre-
commit state, it can always safely commit (but is not
allowed to do so for the sake of failing other processes)

Observation: We may need to elect another coordinator to
send off the final COMMIT

ECE151 – Lecture 12

Recovery
 Introduction
 Checkpointing
 Message Logging

ECE151 – Lecture 12

Recovery: Background
Essence: When a failure occurs, we need to bring the system

into an error-free state:
 Forward error recovery: Find a new state from which the

system can continue operation
 Backward error recovery: Bring the system back into a

previous error-free state
Practice: Use backward error recovery, requiring that we

establish recovery points
Observation: Recovery in distributed systems is complicated

by the fact that processes need to cooperate in identifying a
consistent state from where to recover

ECE151 – Lecture 12

Checkpointing
A recovery line.

Recovery line: Assuming processes regularly checkpoint
their state, the most recent consistent global checkpoint.

ECE151 – Lecture 12

Cascaded Rollback

The domino effect.
Observation: If checkpointing is done at the “wrong” instants,

the recovery line may lie at system startup time =>
cascaded rollback

ECE151 – Lecture 12

a) Stable Storage
b) Crash after drive 1

is updated
c) Bad spot

After a crash:
 If both disks are identical: you’re in good shape.
 If one is bad, but the other is okay (checksums):

choose the good one.
 If both seem okay, but are different:

choose the main disk.
 If both aren’t good: you’re not in a good shape.

Recovery Stable Storage

ECE151 – Lecture 12

Message Logging

Incorrect replay of messages after recovery,
leading to an orphan process.

