
ECE151 – Lecture 15

ECE151 – Lecture 15

Chapter 9
Distributed Object-Based Systems

CORBA

ECE151 – Lecture 15

CORBA
CORBA: Common Object Request Broker Architecture
Background:
 Developed by the Object Management Group (OMG) in

response to industrial demands for object based middleware
 Currently in version #3
 CORBA is a specification: different implementations of

CORBA exist
 Very much the work of a committee: there are over 800

members of the OMG and many of them have a say in what
CORBA should look like

CORBA provides a simple distributed-object model, with
specifications for many supporting services. In enterprises,
it is legacy but is here to stay for a many years.

ECE151 – Lecture 15

Overview of CORBA

The global architecture of CORBA.

ECE151 – Lecture 15

Object Model
Object Request Broker (ORB): CORBA’s object broker that connects

clients, objects, and services
Proxy/Skeleton: Precompiled code that takes care of (un)marshaling

invocations and results
Dynamic Invocation/Skeleton Interface (DII/DSI): To allow clients to

“construct” invocation requests at runtime instead of calling methods
at a proxy, and having the server-side “reconstruct” those request into
regular method invocations

ECE151 – Lecture 15

Object Model
Object adapter: Server-side code that handles incoming invocation

requests.
Interface repository: Database containing interface definitions and

which can be queried at runtime
Implementation repository: Database containing the implementation

(code, and possibly also state) of objects. Effectively: a server that
can launch object servers.

ECE151 – Lecture 15

CORBA Object Model
CORBA has a “traditional” remote-object model in which an

object residing at an object server is remote accessible
through proxies

Observation: All CORBA specifications are given by means
of interface descriptions, expressed in an IDL. CORBA
follows an interface-based approach to objects:

 Not the objects, but interfaces are the really important entities
 An object may implement one or more interfaces
 Interface descriptions can be stored in an interface repository,

and looked up at runtime
 Mappings from IDL to specific programming are part of the

CORBA specification (languages include C, C++,
Smalltalk, Cobol, Ada, and Java.

ECE151 – Lecture 15

Corba Services

Overview of CORBA services.

Provides the current time within specified error marginsTime

Mechanisms for secure channels, authorization, and auditingSecurity

Facilities for expressing relationships between objectsRelationship

Facilities for persistently storing objectsPersistence

Facilities to publish and find the services on object has to offerTrading

Facilities for associating (attribute, value) pairs with objectsProperty

Facilities for systemwide name of objectsNaming

Facilities for attaching a license to an objectLicensing

Facilities for creation, deletion, copying, and moving of objectsLife cycle

Facilities for marshaling and unmarshaling of objectsExternalization

Advanced facilities for event-based asynchronous communicationNotification

Facilities for asynchronous communication through eventsEvent

Flat and nested transactions on method calls over multiple objectsTransaction

Facilities to allow concurrent access to shared objectsConcurrency

Facilities for querying collections of objects in a declarative mannerQuery

Facilities for grouping objects into lists, queue, sets, etc.Collection

DescriptionService

ECE151 – Lecture 15

Object Invocation Models

Invocation models supported in CORBA.

Caller continues immediately
and can later block until
response is delivered

At-most-onceDeferred
synchronous

Caller continues immediately
without waiting for any response
from the server

Best effort deliveryOne-way

Caller blocks until a response is
returned or an exception is
raised

At-most-onceSynchronous

DescriptionFailure semanticsRequest type

ECE151 – Lecture 15

Event and Notification Services

The logical organization of suppliers and consumers
of events, following the push-style model.

ECE151 – Lecture 15

Event and Notification Services

The pull-style model for event delivery in CORBA.

ECE151 – Lecture 15

Messaging
CORBA's callback model for asynchronous method

invocation.

ECE151 – Lecture 15

Messaging

CORBA'S polling model for
asynchronous method invocation.

ECE151 – Lecture 15

Interoperability

GIOP message types.

Part (fragment) of a larger messageBothFragment

Contains information on an errorBothMessageError

Indication that connection will be closedBothCloseConnection

Indicates client no longer expects a replyClientCancelRequest

Contains location information on an objectServerLocateReply

Contains a request on the exact location of an objectClientLocateRequest

Contains the response to an invocationServerReply

Contains an invocation requestClientRequest

DescriptionOriginatorMessage type

ECE151 – Lecture 15

 Interceptors

Logical placement of interceptors in CORBA.

Request-level: Allows you to
modify invocation semantics
(e.g., multicasting)
Message-level: Allows you
to control message-passing
between client and server
(e.g., handle reliability and
fragmentation)

ECE151 – Lecture 15

Naming
Important: In CORBA, it is essential to distinguish specification-level

and implementation-level object references
Specification level: An object reference is considered to be the same as

a proxy for the referenced object having an object reference means
you can directly invoke methods; there is no separate client-to-object
binding phase

Implementation level: When a client gets an object reference, the
implementation ensures that, one way or the other, a proxy for the
referenced object is placed in the client’s address space:

 ObjectReference objRef;
 objRef = bindTo(object O in server S at host H);

Object references in CORBA used to be highly implementation
dependent: different implementations of CORBA could normally not
exchange their references.

ECE151 – Lecture 15

Interoperable Object References
Observation: Recognizing that object references are

implementation dependent, we need a separate
referencing mechanism to cross ORB boundaries

Solution: Object references passed from one ORB to
another are transformed by the bridge through which
they pass (different transformation schemes can be
implemented)

Observation: Passing an object reference refA from
ORB A to ORB B circumventing the A-to-B bridge
may be useless if ORB B doesn’t understand refA

ECE151 – Lecture 15

Object References
To allow all kinds of different systems to communicate, we

standardize the reference that is passed between bridges:

ECE151 – Lecture 15

Object References
Indirect binding in CORBA.

ECE151 – Lecture 15

Naming Service
CORBA’s naming service allows servers to associate a name to an

object reference, and have clients subsequently bind to that object
by resolving its name

Observation: In most CORBA implementations, object references
denote servers at specific hosts; naming makes it easier to relocate
objects

Observation: In the naming graph all nodes are objects; there are no
restrictions to binding names to objects => CORBA allows arbitrary
naming graphs

Question: How do you imagine cyclic name resolution stops?
Observation: There is no single root; an initial context node is returned

through a special call to the ORB.
Also: the naming service can operate across different ORBs =>

interoperable naming service

ECE151 – Lecture 15

Portable Object Adaptor

Mapping of CORBA object identifiers to servants.
a) The POA supports multiple servants.
b) The POA supports a single servant.

ECE151 – Lecture 15

Portable Object Adaptor

Changing a C++ object into a CORBA object.

My_servant *my_object; // Declare a reference to a C++ object
CORBA::Objectid_var oid; // Declare a CORBA identifier

my_object = new MyServant; // Create a new C++ object
oid = poa ->activate_object (my_object);

// Register C++ object as CORBA OBJECT

ECE151 – Lecture 15

Fault Tolerance
Essence: Mask failures through replication of objects.
Replicas form object groups.
Object groups are transparent to clients: they appear as

“normal” objects.
This approach requires a separate type of object

reference: Interoperable Object Group Reference:

ECE151 – Lecture 15

Object Groups

IOGRs have the same structure as IORs, but different uses.
In IORs an additional profile is used as an alternative;
in IOGR, it denotes another replica.

ECE151 – Lecture 15

An Example Architecture
An example architecture of a fault-tolerant CORBA

system.

ECE151 – Lecture 15

Security
Allow the client and object to be mostly unaware of all the

security policies, except perhaps at binding time; the ORB
does the rest. Specific policies are passed to the ORB as
(local) objects and are invoked when necessary:

Examples: Type of message protection, lists of trusted parties.

ECE151 – Lecture 15

Security (2)

The role of security interceptors in CORBA.

