ECE151 — Lecture 16

Chapter 9
Distributed Object-Based Systems
DCOM

ECEI151 — Lecture 16

Distributed COM

DCOM: Distributed Component Object Model

Microsoft's solution to establishing inter-process
communication, possibly across machine
boundaries.

Supports a primitive notion of distributed objects

Evolved from early Windows versions to current
NT-based systems (including Windows 2000)

Comparable to CORBA'’s object request broker

ECEI151 — Lecture 16

Overview of DCOM

Somewhat confused? DCOM is related to many things that
have been introduced by Microsoft in the past couple of
years: Adds facilities to communicate across process and
machine boundaries.

ActlveX Documents (((B:rg#tfclﬂg) Scripting
j In-place
. Document editing
OLE Embeddin .
9 linking Drag
and drop
Interprocess
data transfer | persistent Object
Persistent | references | activation
storage
\ Core COM library

Object Model

The difference between language-defined and binary
interfaces.

Pointer to method
implementation

Binary interfaces

IDL specification

compiler > *——F— >

IDL-to-interface S E— i

Java class defs

i 4 C++ class defs i
I C prototypes Standard _ |
| | IDL-to-language programming- Compiler- |
I compiler —» language [™ specific :
| compiler code :
i Language-specific \
\ interface descriptions b

Language-defined interfaces

DCOM Registry and Proxy

SCM: Service Control Manager, responsible for activating
objects (ctf., to CORBA’s implementation repository).

Proxy marshaler: handles the way that object references are
passed between different machines

Client machine Object server
SCM Client application Lgk')fjj’tj Lo bjectJ SCM
A
Proxy Client | com Proxy Object COM
? marshaler proxy marshaler| stub T
Local OS Local OS ¥
Registry Registry Ej
- /

/

Microsoft RPC Network

COM Object Model

An 1nterface 1s a collection of semantically related
operations

Each interface 1s typed, and therefore has a globally
unique interface identifier

A client always requests an implementation of an
interface:

— Locate a class that implements the interface
— Instantiate that class, 1.e., create an object
— Throw the object away when the client 1s done

ECEI151 — Lecture 16

DCOM Services

CORBA Service DCOM/COM+ Service Windows 2000 Service
Collection ActiveX Data Objects -
Query None -
Concurrency Thread concurrency -

Transaction

COM+ Automatic Transactions Distributed Transaction Coordinator

Event

COM+ Events -

Notification

COM+ Events -

Externalization

Marshaling utilities -

Life cycle Class factories, JIT activation -
Licensing Special class factories -
Naming Monikers Active Directory
Property None Active Directory
Trading None Active Directory

Persistence

Structured storage Database access

Relationship None Database access
Security Authorization SSL, Kerberos
Time None None

Overview of DCOM servites'ih ¢Stiiparison to CORBA services.

Events

Object invocations: Synchronous remote-method calls with at
most-once semantics. Asynchronous invocations are supported
through a polling model, as in CORBA.

Event communication: Similar to CORBA’s push-style model:
Messaging: Completely analogous to CORBA messaging.

Supplier Consumer

Event class ' m_event
object
Event W Consumer
Interface object
containing ~—) ﬂ m_eventll

m_event
™ Object
Invocation ‘\ Invocation implementing
Is stored —Y Is passed m_event

to consumer

Clients and Servers

Objects are referenced by means of a local interface pointer.
The question 1s how such pointers can be passed between
different machines:

Question: Where does the proxy marshaler come from?
Do we always need 1t?

Process A Process B
) o Marshaled) o
Client application client proxy Client application
Client Proxy i > Proxy . Client
proxy (un)marshaler (un)marshaler proxy

AN
\\ ’
’
N ’
~ ’
~ s
~ -
~ e — e —— — _ _ -
- ——— - L= —_——— =

N ’

N s
Ay /
Y ¢

Binding information \ i Same binding
\ ! information
Yy

Object | ,, .
<tub Object

Object server

Naming: Monikers

Observation: DCOM can handle only objects as
temporary instances of a class. To accommodate
objects that can outlive their client, something else 1s
needed.

Moniker: A hack to support real objects

A moniker associates data (e.g., a file), with an
application or program

Monikers can be stored

A moniker can contain a binding protocol,
specifying how the associated program should be
“launched” with respect to the data.

ECEI151 — Lecture 16

Monikers

Step Performer Description

1 Client Calls BindMoniker at moniker
: Looks up associated CLSID and instructs SCM
2 Moniker to create object
3 SCM Loads class object
: Creates object and returns interface pointer to

4 Class object moniker
3 Moniker Instructs object to load previously stored state
6 Object Loads its state from file
7 Moniker Returns interface pointer of object to client

ECEI151 — Lecture 16

Monikers

Moniker type Description
File moniker Reference to an object constructed from a file
URL moniker Reference to an object constructed from a URL
Class moniker Reference to a class object

Composite moniker | Reference to a composition of monikers

ltem moniker Reference to a moniker in a composition

Pointer moniker Reference to an object in a remote process

DCOM-defined moniker types.

ECEI151 — Lecture 16

Active Directory

Essence: a worldwide distributed directory service, but one that does not
provide location transparency.

Basics: Associate a directory service (called domain controller) with
each domain; look up the controller using a normal DNS query:

Controller 1s implemented as an LDAP server

DNS
1. Ask for host address 2. Requested address
of domain controller
In a given domain
3. LDAP quer
query > |
Client Domain
controller
o
4. LDAP reply

Fault Tolerance

Automatic transactions: Each class object
(from which objects are created), has a
transaction attribute that determines how
its objects behave as part of a transaction:

Transactions are essentially executed at the level of a
method mvocation.

Attribute value Description
REQUIRES NEW A new transaction is always started at each invocation
REQUIRED A new transaction is started if not already done so
SUPPORTED Join a transaction only if caller is already part of one

NOT _SUPPORTED Never join a transaction

DISABLED Never join a transaction, even if told to do so

ECEI151 — Lecture 16

Declarative Security

Declarative security: Register per object what the system
should enforce with respect to authentication.

Authentication 1s associated with users and user groups.
There are different authentication levels:

Authentication level

Description

NONE No authentication is required

CONNECT Authenticate client when first connected to server
CALL Authenticate client at each invocation

PACKET Authenticate all data packets

PACKET_INTEGRITY

Authenticate data packets and do integrity check

PACKET_PRIVACY

Authenticate, integrity-check, and encrypt data packets

ECEI151 — Lecture 16

Declarative Security

Delegation: A server can impersonate a client
depending on a level:

There 1s also support for programmatic security
by which security levels can be set by an application,
as well as the required security services (see book).

Impersonation level Description
ANONYMOUS The client is completely anonymous to the server
The server knows the client and can do access control
IDENTIFY checks
IMPERSONATE The server can invoke local objects on behalf of the client
DELEGATE The server can invoke remote objects on behalf of the client

ECEI151 — Lecture 16

Programmatic Security

a) Detfault authentication services supported in DCOM.
b) Default authorization services supported in DCOM.

Service Description
NONE No authentication
DCE_PRIVATE DCE authentication based on shared keys
DCE_PUBLIC DCE authentication based on public keys
WINNT Windows NT security

GSS_KERBEROS Kerberos authentication

(a)

Service Description
NONE No authorization
NAME Authorization based on the client's identity
DCE Authorization using DEC Privilege Attribute Certificates (PACs)

(b)
ECEI151 — Lecture 16

Summary

Issue CORBA DCOM
Design goals Interoperability Functionality
Object model Remote objects Remote objects
Services Many of its own From environment
Interfaces IDL based Binary
Sync. communication Yes Yes
Async. communication Yes Yes
Callbacks Yes Yes
Events Yes Yes
Messaging Yes Yes
Object server Flexible (POA) Hard-coded
Directory service Yes Yes
Trading service yes No

Continued ...

Comparison of CORBA and DCOM.

ECEI151 — Lecture 16

Summary

Issue CORBA DCOM
Naming service Yes Yes
Location service No No

Object reference

Object's location

Interface pointer

Synchronization Transactions Transactions
Replication support Separate server None
Transactions Yes Yes

Fault tolerance

By replication

By transactions

Recovery support

Yes

By transactions

Security

Various mechanisms

Various mechanisms

Comparison of CORBA and DCOM.

ECEI151 — Lecture 16

