ECE 152A Lecture # 0

Prof. Volkan Rodoplu Room 4113, Engineering I Department of ECE, UCSB

Useful Course Information

- Professor: Volkan Rodoplu (vrodoplu@ece.ucsb.edu)
- Lectures: TR 5:00-6:15 PM, LSB 1001
- Course web page: <u>http://www.ece.ucsb.edu/courses/ECE15</u>
 2A/152A F05Rodoplu
 - Read course web page regularly for announcements

Teaching Assistants

- Roopa Chari (roopa_chari@umail.ucsb.edu)
- Sean Gordoni (sgordoni@umail.ucsb.edu)
- Yi-Wei Lin (<u>ywlin@umail.ucsb.edu</u>)
- Saeed Mirzaeian
 (mirzaeian@umail.ucsb.edu)

What is ECE 152A?

- Junior-level course on digital design principles
- Prerequisites: Basic knowledge of digital design (K-maps, Boolean minimization, combinational logic problems)
- Basic course components: Lecture, laboratory, homework
- Leads to courses: ECE 154 (computer architecture), ECE 152B (digital design methodologies), ECE 124 (VLSI design)

What will I learn in this course?

- Very useful and fundamental hardware design skills that you can use in industry internships:
 - Sequential design (e.g. designing a simple controller)
 - Experience with an FPGA (Field-Programmable Gate Array) board (XSA50)
 - Verilog: a hardware description language that is used throughout industry for digital design.
 - Structures like ADDERS that go into the ALU in the CPU of a processor.

Applicable to Design Paradigms

- The skills that you develop in this course are also useful for all these digital design paradigms:
 - Customized, highly hand-optimized design of microprocessors (such as Intel's).
 - DSPs (Digital Signal Processors) such as the TI (Texas Instruments) DSP chips and co-processors (but also need ECE 153 and ECE 154).
 - ASIC (Application Specific Integrated Circuit) design (cell phone components; wireless LAN chips).

Course Organization

- Weekly lectures
- Laboratory: Very significant component of the course.
 - Weekly laboratory sections.
 - Labs are synchronized with the lectures.
 - Work in teams of 2 people.
- Homework
- Exams

Outline of Course Calendar

- Weeks 1-2: Review of combinational logic, Kmaps; Verilog for combo design
- Weeks 3-5: Sequential logic, counters, FSMs;
 Verilog for sequential design
- Week 6: FSM optimization, timing
- Week 7: Adders; CMOS; RAM
- Week 8: Datapath and control
- Weeks 9-10: Course review; review sessions
 - See detailed course calendar in syllabus

Textbooks

- (Required) Brown & Vranesic, Fundamentals of Digital Logic with Verilog Design
 - Very well-written book that actually explains the Verilog language while developing the digital design principles
- (Required) Course Reader available at the UCSB bookstore
- (Optional) Charles Roth, Fundamentals of Logic Design
 - ECE 15A textbook

Assignments

Reading assignments:

In course calendar in syllabus (for each lecture)

• Pre-lab (or Lab problem set):

- Photocopy due at beginning of certain labs (you keep the real one)
- Noted in course calendar; deadlines shown on the course web page

Homework:

- Due in HOMEWORK BOX, 5th Floor, Engineering I
- Due dates on course web page and in course calendar in syllabus

Laboratories

Due dates are on course web page

ALL HOMEWORKS and ALL LABS have already been posted on the course web page.

Announcements

- Move Monday morning section to Monday night: 7:00 – 9:50 PM
 - Can all Monday morning students switch to ANY other section?
- Weekly review sessions are planned to take place Wednesday nights, starting next week (check course web page)
 - Aim: to answer questions about lectures and homework (and about laboratory if needed).
- To access SOLUTIONS on the course web page: username:____, password:____