Latches, the D Flip-Flop \& Counter Design

ECE 152A - Fall 2006

Reading Assignment

- Brown and Vranesic
- 7 Flip-Flops, Registers, Counters and a Simple

Processor

- 7.1 Basic Latch
- 7.2 Gated SR Latch
- 7.2.1 Gated SR Latch with NAND Gates
- 7.3 Gated D Latch
- 7.3.1 Effects of Propagation Delays

Reading Assignment

- Brown and Vranesic (cont)
- 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
- 7.4 Master-Slave and Edge-Triggered D Flip-Flops
- 7.4.1 Master-Slave D Flip-Flop
- 7.4.2 Edge-Triggered D Flip-Flop
- 7.4.3 D Flip-Flop with Clear and Preset

Reading Assignment

- Roth
- 11 Latches and Flip-Flops
- 11.1 Introduction
- 11.2 Set-Reset Latch
- 11.3 Gated D Latch
- 11.4 Edge-Triggered D Flip-Flop

Reading Assignment

- Roth (cont)
- 12 Registers and Counters
- 12.1 Registers and Register Transfers
- 12.2 Shift Registers
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences

Combinational vs. Sequential Logic

- Combinational logic
- Function of present inputs only
- Output is known if inputs (some or all) are known
- Sequential logic
- Function of past and present inputs
- Memory or "state"
- Output known if present input and present state are known
- Initial conditions often unknown (or undefined)

Gate Delays

- Recall from earlier lecture
- When gate inputs change, outputs don't change instantaneously

Feedback

- Outputs connected to inputs
- Single inverter feedback
- If propagation delay is long enough, output will oscillate
\square

Feedback

- If the propagation delay is not long enough, the output will settle somewhere in the middle
- $V_{\text {in }}=V_{\text {out }}$

Feedback

- Ring Oscillator

- Any odd number of inverters will oscillate - $1 / 2$ period $=$ total prop delay of chain

Feedback

- What about an even number of inversions?
- Two inverter feedback
- Memory (or State)
- Static 1 or 0 "stored" in memory

(a)

(b)

The Latch

- Replace inverters with NOR gates

The Set-Reset (SR) Latch

- NOR implementation
- Inverted feedback

The SR Latch

- R = Reset (clear)
- $Q \rightarrow 0, Q^{*} \rightarrow 1$
- $S=$ Set (preset)
- $Q \rightarrow 1, Q^{*} \rightarrow 0$
- NOR gate implementation
- Either input $=1$ forces an output to 0

The SR Latch (cont)

- Terminology
- Present state, Q
- Current value of Q and Q^{*}
- Next state, Q^{+}
- Final value of Q and Q^{*} after input changes

The SR Latch (cont)

- Operation
- $S=1, R=0$: set to $1, Q^{+}=1$
- $S=0, R=1$: reset to $0, Q^{+}=0$
- $S=0, R=0$: hold state, $Q^{+}=Q$
- $S=1, R=1$: not allowed
- $Q^{+}=Q^{*+}=0$, lose state

The SR Latch (cont)

- Timing Diagram

- RS inputs are "pulses"
- Temporarily high, but normally low

The SR Latch (cont)

- Characteristic Equation
- Algebraic expression of flip-flop behavior
- Plot characteristic table on map, find Q^{+}
- $Q^{+}=S+R^{\prime} Q(S=R=1$ not allowed $)$

$\boldsymbol{s}(t)$	$\boldsymbol{R}(t)$	$\boldsymbol{Q}(\mathrm{t})$	$\boldsymbol{Q (t + \boldsymbol { t })}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

The SR Latch (cont)

- Characteristic Equation
- $Q^{+}=S+R^{\prime} Q(S=R=1$ not allowed $)$
- Q becomes 1 when $S=1, R=0$
- Stays Q when $S=R=0$
- Q becomes 0 when $S=0, R=1$

The SR Latch (cont)

- State Table

	$\mathrm{NS}\left(\mathrm{Q}^{+}\right)$			
$\mathrm{PS}(\mathrm{Q})$	$\mathrm{SR}=00$	01	10	11
0	0	0	1	X
1	1	0	1	X

The SR Latch (cont)

- State Diagram

The SR Latch with NANDS

- NAND Based S'R' Latch
- S' = R' = 0 not allowed
- Either input $=0$ forces output to 1

The Gated SR Latch

- Also known as "transparent" latch
- Output follows input (transparent) when enabled

The Gated SR Latch (cont)

- Timing Diagram

The Gated SR Latch (cont)

- NAND Implementation

The Gated Data (D) Latch

- NAND Implementation of transparent D latch

The Gated D Latch

- Timing Diagram

The Edge Triggered D Flip-Flop

- The D Flip-Flop
- Input D, latched and passed to Q on clock edge
- Rising edge triggered or falling edge triggered
- Characteristic table and function

The Edge Triggered D Flip-Flop

- Most commonly used flip-flop
- Output follows input after clock edge
- Q and Q^{*} change only on clock edge
- Timing diagram for negative edge triggered flip-flop

The D Flip-Flop

- State Table

	$\mathrm{NS}\left(\mathrm{Q}^{+}\right)$	
$\mathrm{PS}(\mathrm{Q})$	$\mathrm{D}=0$	$\mathrm{D}=1$
0	0	1
1	0	1

The D Flip-Flop (cont)

- State Diagram

The Master-Slave D Flip-Flop

- Construct edge triggered flip-flop from 2 transparent latches
- Many other topologies for edge triggered flip-flops
- Falling edge triggered (below)

The Master-Slave D Flip-Flop (cont)

- Timing Diagram
- Falling edge triggered

The Master-Slave D Flip-Flop (cont)

- A Second Timing Diagram
- Rising edge triggered

The Edge Triggered D Flip-Flop

- "True" Edge Triggered D Flip-Flop
- Never transparent (unlike Master Slave)

The Edge Triggered D Flip-Flop

- Operation of Flip-Flop

Types of D Flip-Flops

- Gated, Positive Edge and Negative Edge

Timing Parameters

- CLK \rightarrow Q
- Delay from clock edge (CLK) to valid (Q, Q*) output
- Setup time $t_{\text {su }}$
- Stable, valid data (D) before clock edge (CLK)
- Hold time $t_{\text {hold }}$
- Stable, valid data (D) after clock edge (CLK)

Maximum Frequency

- Maximum frequency (minimum clock period) for a digital system
- $\mathrm{CLK} \rightarrow \mathrm{Q}+$ propagation delay $+t_{\text {su }}$

Counter Design with D Flip-Flops

- Design Example \#1: Modulo 3 counter - $00 \rightarrow 01 \rightarrow 10 \downarrow$
$\uparrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$
- Requires 2 flip-flops
- One for each "state variable"

Counter Design with D Flip-Flops

- State Diagram

Transitions on clock edge

Counter Design with D Flip-Flops

- State Table

PS		NS	
A	B	A^{+}	B^{+}
0	0	0	1
0	1	1	0
1	0	0	0
1	1	X	X

Counter Design with D Flip-Flops

- Next State Maps

Counter Design with D Flip-Flops

- Implementation with D Flip-Flops
- What are the D inputs to flip-flops A and B ?
- Recall characteristic equation for D flip-flop
- $\mathrm{Q}^{+}=\mathrm{D}$
- Therefore, $A^{+}=B \rightarrow D_{A}=B$
- and... $\quad B^{+}=A^{\prime} B^{\prime} \rightarrow D_{B}=A^{\prime} B^{\prime}$

Counter Design with D Flip-Flops

- Implementation with positive edge triggered flip-flops

Counter Design with D Flip-Flops

- Implementation with positive edge triggered flip-flops
- Timing diagram

Counter Design with D Flip-Flops

- Design Example \#2:
- Modulo 3 counter with up/down* input
- Counter counts up with input = 1 and down with input = 0
- Implement with D flip-flops

Counter Design with D Flip-Flops

- State diagram

Counter Design with D Flip-Flops

- State table

U	A	B	A^{+}	B^{+}
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	X	X
1	0	0	0	1
1	0	1	1	0
1	1	0	0	0
1	1	1	X	X

Counter Design with D Flip-Flops

- Next state maps and flip-flop inputs

$A^{+}=D_{A}=U B+U^{\prime} A^{\prime} B^{\prime}$

$B^{+}=D_{B}=U^{\prime} A+U A^{\prime} B^{\prime}$

