Machine Minimization

ECE 152A - Fall 2006

Reading Assignment

- Brown and Vranesic
- 8 Synchronous Sequential Circuits
- 8.6 State Minimization
- 8.6.1 Partitioning Minimization Procedure
- 8.6.2 Incompletely Specified FSMs

Reading Assignment

- Roth
- 15 Reduction of State Tables / State Assignment
- 15.1 Elimination of Redundant States
- 15.2 Equivalent States
- 15.3 Determination of State Equivalence Using an Implication Table
- 15.4 Equivalent Sequential Circuits
- 15.5 Incompletely Specified State Tables

Elimination of Redundant States

- Row Matching
- Recall CD player controller
- Mealy implementation contained two sets of rows with same next state and output
- Eliminate redundant states
- Row matching doesn't identify "equivalent states"
- Row matching identifies "same state"
- Equivalent states are the more general case

Equivalent States

- Definitions of equivalent states
- Roth : 2 states equivalent iff for every single input x, outputs are the same and next states are equivalent (as opposed to row matching)
- Pairwise comparison using implication table
- Kohavi : Iff for every possible input sequence the same output sequence will be produced regardless of whether S_{i} or S_{j} is the initial state
- Moore reduction procedure to find equivalence partition

Determination of State Equivalence using an Implication Table

- Find Equivalent Pairs

NS			
PS	$x=0$	$x=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Determination of State Equivalence using an Implication Table
(1) Construct Implication Table for Pairwise Comparison
(2) First Pass

- Compare outputs
- For states to be equivalent, next state and output must be the same
- Put "X's" where outputs differ

Implication Table (first pass)

B						PS	ns		
							x=0	$\mathrm{x}=1$	z
C						A	D	c	0
	X	X				в	F	н	0
						c	E	D	1
D			X			D	A	E	0
						E	c	A	1
	X	X				F	F	в	1
E	X	X		X		G	в	н	0
F	X	X		X		H	c	G	1
G			X		X	X			
H	X	X		X			X		
	A	B	C	D	E	F	G		

Determination of State Equivalence using an Implication Table
(3) One column (or row) at a time, find implied pairs

Implication Table (second pass)

B	D-F					ns			
	C-H					Ps	x=0	x=1	z
C						A	D	c	0
	X	X				в	F	н	0
						c	E	D	1
D	${ }_{\text {A }} \mathrm{A}-\mathrm{D}$	$\begin{aligned} & \text { A-F } \\ & \text { E-H } \end{aligned}$	X			D	A	E	0
						E	c	A	1
E			C-E			F	F	в	1
	x	X	A-D	x		G	B	H	0
F			E-F		C-F	H	c	G	1
	X	X	B-D	X	A-B				
	B-D	B-F		A-B					
G	C-H	H-H	X	E-H	X	X			
			C-E		C-C	C-F			
H	X	X	D-G	X	A-G	B-G	X		
	A	B	C	D	E	F	G		

Determination of State Equivalence using

 an Implication Table(3) One column (or row) at a time, find implied pairs (cont)

- Remove self implied pairs
- A-D in cell A-D
- C-E in cell C-E
- Remove same state pairs
- H-H in cell B-G
- $\mathrm{C}-\mathrm{C}$ in cell $\mathrm{H}-\mathrm{E}$

Implication Table (second pass)

Implication Table (second pass)

Determination of State Equivalence using an Implication Table
 (4) One column (or row) at a time, eliminate implied pairs

Implication Table (third pass)

B	P					ns			
						PS	x=0	$\mathrm{x}=1$	z
C						A	D	c	0
D	C-E	-	X			C	E	D	1
						E	c	A	1
E	X	X	A-D	X		F	F	в	1
			A-D	x		G	в	н	0
F			Y		8-7	H	c	G	1
	X	X	B-B	X	d-8				
G	B-D	8		-		X			
	C-H	N	X	$\underline{2-N}$	x	X			
H	X	X	C-E	X	A-G	9-7	X		
		x	D-G			EA			
	A	B	C	D	E	F	G		

Determination of State Equivalence using an Implication Table
(5) Next pass, one column (or row) at a time, eliminate implied pairs
(6) Continue until pass results in no further elimination of implied pairs

Implication Table (fourth pass)

Determination of State Equivalence using an Implication Table
(7) Combine equivalent states (based on coordinates of cells, not contents)

- $A \equiv D, C \equiv E$ in example
- Equivalence is pairwise
- $A \equiv B, B \equiv C$ implies $A \equiv C$ (transitive)
(8) Construct reduced state table

Determination of State Equivalence using

 an Implication Table- Reduced State Table
- * indicates change from original state table

NS			
PS	$\mathrm{x}=0$	$\mathrm{x}=1$	z
A	A* *	C	0
B	F	H	0
C	C* *	A *	1
F	F	B	1
G	B	H	0
H	C	G	1

Determination of State Equivalence using an Implication Table

- Row Matching on an Implication Table
- Mealy Machine outputs
- Recall 101 sequence detector (direct Mealy conversion)

NS,z		
PS	$x=0$	$x=1$
A	A,0	B,0
B	C,0	B,0
C	A,0	D,1
D	C,0	B,0

Implication Table

- Same state pairs
- Eliminate implied pairs
- Matching rows
- No implied pairs
- B and D are "same state"
B
c

A B C

$N S, z$		
PS	$\mathrm{x}=0$	$\mathrm{x}=1$
A	$\mathrm{A}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
C	$\mathrm{A}, 0$	$\mathrm{D}, 1$
D	$\mathrm{C}, 0$	$\mathrm{~B}, 0$

Moore Reduction Procedure

- States S_{i} and S_{j} of machine M are said to be equivalent If and only if, for every possible input sequence, the same output sequence will be produced regardless of whether S_{i} or S_{j} is the initial state

Zvi Kohavi,
Switching and Finite Automata Theory

Moore Reduction Procedure

- Two states, S_{i} and S_{j}, of machine M are distinguishable if and only if there exists at least one finite input sequence which, when applied to M, causes different output sequences depending on whether S_{i} or S_{j} is the initial state
- The sequence which distinguishes these states is called a distinguishing sequence of the pair ($\left.\mathrm{S}_{i} \mathrm{~S}_{i}\right)$

Moore Reduction Procedure

- If there exists for pair ($\mathrm{S}_{j}, \mathrm{~S}_{j}$) a distinguishing sequence of length \underline{k}, the states in $\left(S_{i}, S_{j}\right)$ are said to be k-distinguishable
- States that are not k-distinguishable are said to be k-equivalent

Moore Reduction Procedure

- The result sought is a partition of the states of M such that two states are in the same block if and only if they are equivalent
- P_{0} corresponds to 0 -distinguishablity (includes all states of machine M)
- P_{1} is obtained simply by inspecting the table and placing those states having the same outputs, under all inputs, in the same block
- P_{1} establishes the sets of states which are 1-equivalent

Moore Reduction Procedure

- Obtain partition P_{2}
- This step is carried out by splitting blocks of P_{1}, whenever their successors are not contained in a common block of P_{1}
- Iterate process of splitting blocks
- If for some $k, P_{k+1}=P_{k}$, the process terminates and P_{k} defines the sets of equivalent states of the machine
- P_{k} is thus called the equivalence partition
- The equivalence partition is unique

Moore Reduction Procedure

- Recall state table from earlier example

NS			
PS	$\mathrm{x}=0$	$\mathrm{x}=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Moore Reduction Procedure

- $\mathrm{P}_{0}=(\mathrm{ABCDEFGH})$
- P_{1} is obtained by splitting states having different outputs
- $P_{1}=(A B D G)(C E F H)$
- Block 1 = ABDG, Block 2 = CEFH

NS			
PS	$\mathrm{x}=0$	$\mathrm{x}=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Moore Reduction Procedure

- Obtain P_{2}
- Block 1 = ABDG, Block 2 = CEFH

NS			
PS	$\mathrm{x}=0$	$\mathrm{x}=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Moore Reduction Procedure

- Obtain P_{2} (cont)
- Block 1 = ABDG, Block 2 = CEFH

NS			
PS	$x=0$	$x=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Moore Reduction Procedure

- Split B out of block 1
- B is " 2 distinguishable" from A, D and G
- No states of block 2 are " 2 distinguishable"
- $P_{2}=(A D G)(B)(C E F H)$
- Block 1 = ADG
- Block 2 = B
- Block 3 = CEFH

Moore Reduction Procedure

- Obtain P_{3}
- $P_{2}=(A D G)(B)(C E F H)$

NS			
PS	$x=0$	$x=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Moore Reduction Procedure

- Obtain P_{3} (cont)
- Split G from block 1
- G is 3-distinguishable from A and D
- Split F from block 3
- F is 3-distinguishable from C, E and H
- $P_{3}=(A D)(G)(B)(C E H)(F)$
- Block $1=A D$, block $2=G$, block $3=B$, block $4=$ CEH and block $5=\mathrm{F}$

Moore Reduction Procedure

- Obtain P_{4}
- $P_{3}=(A D)(G)(B)(C E H)(F)$

Moore Reduction Procedure

- Obtain P_{4} (cont)
- Split H from block 4
- H is 4-distinguishable from C and E
- $\mathrm{P}_{4}=(\mathrm{AD})(\mathrm{G})(\mathrm{B})(\mathrm{CE})(\mathrm{H})(\mathrm{F})$
- Block 1 = AD, block $2=\mathrm{G}$, block 3 = B,
block $4=\mathrm{CEH}$, block $5=\mathrm{H}$ and block $6=\mathrm{F}$

Moore Reduction Procedure

- Obtain P_{5}
- $P_{4}=(A D)(G)(B)(C E)(H)(F)$

NS			
PS	$x=0$	$x=1$	z
A	D	C	0
B	F	H	0
C	E	D	1
D	A	E	0
E	C	A	1
F	F	B	1
G	B	H	0
H	C	G	1

Moore Reduction Procedure

- Obtain P_{5} (cont)
- No blocks split from P_{5}
- $P_{5}=P_{4}=(A D)(G)(B)(C E)(H)(F)$
- $P_{5}=P_{4}=$ equivalence partition
- Same result as implication table

Reduction of Incompletely Specified

State Tables

- Use "modified row matching" to combine states

	NS		Z		
PS	$x=0$	$x=1$	$x=0$	$x=1$	
A	-	B	-	-	A and C can be combined
B	C	D	-	-	A and D can be combined
C	A	-	0	-	C and D cannot (outputs differ)

Reduction of Incompletely Specified

State Tables

- Using an Implication Table
- State pairs are compatible, not equivalent
- States must be "pairwise" compatible
- $A B C$ requires $A-B, B-C$ and $A-C$
- Compatible relationship is not transitive like equality
- Compatible pairs must be grouped and included in reduced machine

Reduction of Incompletely Specified

State Tables

- V indicates "compatible pair"

A-C and A-D are compatible pairs

Reduction of Incompletely Specified

State Tables

- Heuristic (non-deterministic) process
- Requires "trial and error"
- Not necessarily minimal

	NS		Z	
PS	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
AC	AC	BD	0	-
BD	AC	BD	1	-

