Combinational Logic Building Blocks and Bus Structure

ECE 152A - Fall 2006

Reading Assignment

- Brown and Vranesic
- 3 Implementation Technology
- 3.8 Practical Aspects
- 3.8.7 Passing 1 s and 0s Through Transistor Switches
- 3.8.8 Fan-In and Fan-Out in Logic Gates
- Tri-State Buffers (only this section of 3.8.8)
- 3.9 Transmission Gates
- 3.9.2 Multiplexer Circuit

Reading Assignment

- Brown and Vranesic (cont)
- 6 Combinational-Circuit Building Blocks
- 6.1 Multiplexers
- 6.1.1 Synthesis of Logic Functions Using Multiplexers
- 6.1.2 Multiplexer Synthesis Using Shannon's Expansion
- 6.2 Decoders
- 6.2.1 Demultiplexers
- 6.3 Encoders
- 6.3.1 Binary Encoders
- 6.3.2 Priority Encoders
- 6.4 Code Converters

Reading Assignment

- Roth
- 9 Multiplexers, Decoders and Programmable Logic
- 9.1 Introduction
- 9.2 Multiplexers
- 9.3 Three State Buffers
- 9.4 Decoders and Encoders

Multiplexer

- Passes one of several data inputs to output
- Generally 2^{n} data inputs and always a single data output
- n control lines determine which input is "steered" to the output
- Allows logical (not "tri-state" or electrical) implementation of buses
- Buses and register transfer operations fundamental to digital system design

Multiplexer

- Also possible to implement arbitrary combinational logic with multiplexers
- Universal, combinational logic element
- Also known as "Data Selector" and "Mux"
- In sequential operation, provides parallel to serial conversion

Two-to-One Multiplexer

- F = Select' $\cdot x_{0}+$ Select $\cdot x_{1}$

Four-to-One Multiplexer

- ${ }^{i t h}$ data input ANDed with minterm m_{i} - Embedded circuit generating minterms will become known as a decoder

Building Larger Multiplexers

- 4-to-1 (4:1) Mux
using 2-to-1 (2:1)
Muxes
- Simple and modular
- Adds 2 levels of gate (propagation) delay

Building Larger Multiplexers

- 16:1 Mux constructed from 4:1 Muxes
- Expandable to $32: 1$ and $64: 1$ with additional 2:1 and/or 4:1 Muxes
- With additional levels of propagation delay

Multiplexer Application

- Crossbar Switch
- In general, n-inputs by noutputs
- Connectivity is any input to any output
- Important component of networking hardware
- The bigger, the faster, the better...

Combinational Design Using Multiplexers

- Input variables applied to Mux select lines
- "Steer" (constant) value of function to output
- Allows implementation of n-variable function with 2^{n}-to- 1 multiplexer
- "Steer" derived function (a variable, its complement, the constant 1 or the constant 0) to the output
- Allows implementation of n-variable function with $2^{\text {n-1 }}$-to-1 multiplexer

Combinational Design Using Multiplexers

- Example 1: XOR Function
- Using a 4:1 Mux
- The modified Truth Table
- Possibilities are x, x, 0,1
- The 2-input XOR using a 2:1 Mux

Combinational Design Using Multiplexers

- Example 2: Three input majority function
- Three input function with (2^{n-1}-to-1) 4:1 Mux

Combinational Design Using Multiplexers

- Multiplexer Synthesis Using Shannon's Expansion
- By adding gate level circuitry to Mux inputs, an arbitrary combinational function can be realized with a 2-to-1 Mux
- Externally generating a function of one of the variables

Shannon's Expansion Theorem Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be written int the form

Combinational Design Using Multiplexers

- Example 3 : Three input majority function with 2:1 Mux
- Algebraic expansion

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=\left(w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\right) \\
& f=w_{1}{ }^{\prime}\left(0 w_{2}+0 w_{3}+w_{2} w_{3}\right)+w_{1}\left(1 w_{2}+1 w_{3}+w_{2} w_{3}\right) \\
& f=w_{1}{ }^{\prime}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

Combinational Design Using Multiplexers

- Example 3: Three input majority function with 2:1
Mux
- Truth Table and circuit
implementation

Combinational Design Using Multiplexers

- Shannon's Expansion with 4:1 Mux
- Three input majority function
- Expansion in terms of w_{1} and w_{2} - Verifies earlier (heuristic) solution

$$
\begin{gathered}
f\left(w_{1}, w_{2}, w_{3}\right)=\left(w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\right) \\
f=w_{1}{ }^{\prime} w_{2}^{\prime}\left(00+0 w_{3}+0 w_{3}\right)+w_{1}{ }^{\prime} w_{2}\left(01+0 w_{3}+1 w_{3}\right) \\
+w_{1} w_{2}^{\prime}\left(10+1 w_{3}+0 w_{3}\right)+w_{1} w_{2}\left(11+1 w_{3}+1 w_{3}\right) \\
f=w_{1}{ }^{\prime} w_{2}^{\prime}(0)+w_{1}{ }^{\prime} w_{2}\left(w_{3}\right)+w_{1} w_{2}{ }^{\prime}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{gathered}
$$

Multiplexers and Buses

- Bus allows data transfers between multiple sources and single or multiple destinations over a shared path (wires)
- Bus includes multiple bits
- Parallel data bus
- Only one source on the bus at any time
- Bus contention

Multiplexers and Buses

- Example below illustrates two, four-bit words (X and Y) multiplexed onto the Z bus
- Register transfer operations
- $A^{\prime}: Z \leftarrow X, A: Z \leftarrow Y$

Tri-State Outputs

- Utilizes third, high impedance output state
- In Hi-Z state, output appears as an open circuit to bus connection
- Mux disconnects from bus logically, tri-state output device disconnects electrically

Tri-State Outputs (cont)

- Flavors of tri-state outputs and control

- Bus implementation

NMOS and PMOS Transistors

- Recall static CMOS circuits
- Logic high output passed to output through PMOS transistor(s)
- PMOS transistor passes "good" 1 and "bad" 0
- Logic low output passed to output through NMOS transistor(s)
- NMOS transistor passes "good" 0 and "bad" 1

- "Good" 0 s and 1s are GND and $V_{D D}$
- "Bad" 0s and 1s have degraded DC voltage (logic) levels

NMOS and PMOS Transistors

- Degradation of DC signal levels is a result of the "threshold voltage" $\left(V_{T}\right)$ of transistor and the "body effect"
- To "turn on" the transistor, the gate to source voltage ($V_{G S}$) must exceed the transistor's threshold voltage $\left(V_{T}\right)$
- An NMOS transistor has a positive V_{T}
- A PMOS transistor has a negative V_{T}
- The threshold voltage itself is increased by the body effect by a factor of ~ 1.5

NMOS and PMOS Transistors

- For the inverter below, assume the NMOS device has a V_{T} of $1 \mathrm{~V}\left(V_{G S}>1 \mathrm{~V}\right)$ and the PMOS device has a V_{T} of $-1 \mathrm{~V}\left(V_{G S}<-1 \mathrm{~V}\right)$ and $V_{D D}=5 \mathrm{~V}$

$$
\begin{aligned}
& \text { Input }=5 \mathrm{~V}, V_{G S}(\mathrm{~T} 1)=5 \mathrm{~V}(\text { off }), V_{G S}(\mathrm{~T} 2)=5 \mathrm{~V}(\mathrm{on}) \\
& \text { Output }=0 \mathrm{~V}(\mathrm{GND}) \\
& \text { Input }=0 \mathrm{~V}, V_{G S}(\mathrm{~T} 1)=-5 \mathrm{~V}(\mathrm{on}), V_{G S}(\mathrm{~T} 2)=0 \mathrm{~V}(\mathrm{off}), \\
& \text { Output }=5 \mathrm{~V}\left(V_{D D}\right)
\end{aligned}
$$

NMOS and PMOS Transistors

- Bad 1s (NMOS) and Bad 0s (PMOS)
- $V_{A}=V_{D D}-V_{T \text { (NMOS) }}$ - Input going high; turns off at $V_{G S}=V_{T}$
- $V_{B}=-V_{T \text { (PMOS) }}$
- Input going low; turns off at $V_{G S}=V_{T}$

CMOS AND Gate

- Note degradation in DC signal (logic) levels - AND Gates are never built this way in CMOS

The CMOS Transmission Gate

- When enabled, the CMOS Transmission Gate:
- Passes "good" 1s (through the PMOS transistor)
- Passes "good" 0s (through the NMOS transistors)
- When disabled, the CMOS Transmission gate acts like a Tri-State Buffer

CMOS Transmission Gate MUX

- 2:1 Multiplexer implementation with transmission gates

Decoders

- 2-to-4 Decoder shown
- 2-to-2 ${ }^{\text {n }}$ in general
- Enable input allows construction of decoder tree and demultiplexer
- Generates all minterms when enabled
- Multiple output circuits
- One hot decoding

Decoder Tree

- One-bit expansion (3-to-8) by adding external decoding circuitry

Decoder Tree

- Two-bit expansion (4-to-16) by adding another 2-to-4 decoder

Decoder Applications

- Multiplexer from decoder
- Recall "embedded decoder"

Decoder Applications

- Multiple Output Circuits
- Full Adder using 3×8 Decoder

Decoder Applications

- Decoder Bus Control/Multiplexer

Demultiplexers

- Serial to parallel conversion
- Send a single data bit to a specific address
- A 1-to-2 ${ }^{n}$ demultiplexer is implemented using an n-to-2 ${ }^{n}$ decoder
- The (value of) the data is applied via the enable input
- Valuable circuit in sequential circuits
- Not so much in combinational circuits
- Also referred to as Dmux's

Encoders

- Binary Encoders

- "One hot" input, binary (or other code) representation output
- Reverse of decoder

Encoders

- Priority Encoders
- Used in prioritizing interrupts (or other events)

Code Converters

- BCD to 7-Segment Display Code Converter

