Flip-Flops and Sequential Circuit Design

ECE 152A - Fall 2006

Reading Assignment

- Brown and Vranesic
 - 7 Flip-Flops, Registers, Counters and a Simple Processor
 - 7.5 T Flip-Flop
 - □ 7.5.1 Configurable Flip-Flops
 - 7.6 JK Flip-Flop
 - 7.7 Summary of Terminology
 - 7.8 Registers
 - □ 7.8.1 Shift Register
 - □ 7.8.2 Parallel-Access Shift Register

October 31, 2006

ECE 152A - Digital Design Principles

Reading Assignment

- Brown and Vranesic (cont)
 - 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
 - 7.9 Counters
 - □ 7.9.1 Asynchronous Counters
 - □ 7.9.2 Synchronous Counters
 - □ 7.9.3 Counters with Parallel Load
 - 7.10 Reset Synchronization

October 31, 2006

ECE 152A - Digital Design Principles

3

Reading Assignment

- Brown and Vranesic (cont)
 - 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
 - 7.11 Other Types of Counters
 - □ 7.11.1 BCD Counter
 - □ 7.11.2 Ring Counter
 - □ 7.11.3 Johnson Counter
 - □ 7.11.4 Remarks on Counter Design

October 31, 2006

ECE 152A - Digital Design Principles

Reading Assignment

- Brown and Vranesic (cont)
 - 8 Synchronous Sequential Circuits
 - 8.1 Basic Design Steps
 - 8.1.1 State Diagram
 - □ 8.1.2 State Table
 - □ 8.1.3 State Assignment
 - 8.1.4 Choice of Flip-Flops and Derivation of Next-State and Output Expressions
 - □ 8.1.5 Timing Diagram
 - 8.1.6 Summary of Design Steps

October 31, 2006

ECE 152A - Digital Design Principles

5

Reading Assignment

- Brown and Vranesic (cont)
 - 8 Synchronous Sequential Circuits (cont)
 - 8.2 State-Assignment Problem
 - One-Hot Encoding
 - 8.7 Design of a Counter Using the Sequential Circuit Approach
 - □ 8.7.1 State Diagram and State Table for Modulo-8 Counter
 - 8.7.2 State Assignment
 - □ 8.7.3 Implementation Using D-Type Flip-Flops
 - □ 8.7.4 Implementation Using JK-Type Flip-Flops
 - □ 8.7.5 Example A Different Counter

October 31, 2006

ECE 152A - Digital Design Principles

Reading Assignment

- Roth
 - □ 11 Latches and Flip-Flops
 - 11.5 S-R Flip-Flop
 - 11.6 J-K Flip-Flop
 - 11.7 T Flip-Flop
 - 11.8 Flip-Flops with Additional Inputs
 - 11.9 Summary
 - 12 Registers and Counters
 - 12.5 Counter Design Using S-R and J-K Flip-Flops
 - 12.6 Derivation of Flip-Flop Input Equations Summary

October 31, 2006

ECE 152A - Digital Design Principles

7

The JK Flip-Flop

- Allows J = K = 1 condition
 - Implemented with a gated SR latch and feedback of Q and Q*
 - Q toggles (Q+ = Q') on J = K = 1

October 31, 2006

ECE 152A - Digital Design Principles

The JK Flip-Flop (cont)

- Characteristic table and equation
 - Karnaugh map of characteristic table
 - Characteristic equation
 - $Q^{+} = JQ' + K'Q$

October 31, 2006

ECE 152A - Digital Design Principles

9

The JK Flip-Flop (cont)

- Implementation using a D flip-flop
 - Characteristic Function at D input

October 31, 2006

ECE 152A - Digital Design Principles

The JK Flip-Flop

■ State table

NS (Q^+)

PS (Q)	JK = 00	01	10	11
0	0	0	1	1
1	1	0	1	0

October 31, 2006

ECE 152A - Digital Design Principles

11

The JK Flip-Flop

■ State diagram

October 31, 2006

ECE 152A - Digital Design Principles

The JK Flip-Flop

- With clock circuitry and timing
 - □ Positive edge triggered JK flip-flop

October 31, 2006

ECE 152A - Digital Design Principles

13

The Master Slave JK Flip-Flop

- Master Slave JK Flip-Flop
 - Rising edge triggered
 - note CLK inverted to master

October 31, 2006

ECE 152A - Digital Design Principles

The Master Slave JK Flip-Flop

- Master Slave JK Flip-Flop
 - Falling edge triggered
 - note CLK (CP) inverted to slave

October 31, 2006

ECE 152A - Digital Design Principles

15

The Master Slave JK Flip-Flop

- Master active on CLK = 1
- Slave active on CLK = 0
 - □ Latch data in master on CLK = 1
 - □ Transfer data to slave (output) on CLK = 0
- Timing Diagram Initial Conditions
 - \Box CLK = 0, J = 1, K = 0, Y = 0, Q = 0

October 31, 2006

ECE 152A - Digital Design Principles

The Master Slave JK Flip-Flop

■ Timing Diagram

October 31, 2006

ECE 152A - Digital Design Principles

17

The JK Flip-Flop (cont)

- What happens if J = K = 1 for an indefinite period of time (i.e., much greater than clock period)?
 - $\ \ \square$ Output oscillates at $1\!\!/_{\!\!2}$ the frequency of the clock
 - Divide by two counter

October 31, 2006

ECE 152A - Digital Design Principles

The T (Toggle or Trigger) Flip-Flop

- Connect J and K inputs together
 - □ Combined input "T"

October 31, 2006

ECE 152A - Digital Design Principles

19

The T Flip-Flop

■ State Table

October 31, 2006

ECE 152A - Digital Design Principles

The T Flip-Flop

■ State Diagram

October 31, 2006

ECE 152A - Digital Design Principles

21

The T Flip-Flop (from JK/D)

October 31, 2006

ECE 152A - Digital Design Principles

- 3 bit binary counter design example
 - □ "State" refers to Q's of flip-flops
 - □ 3 bits, 8 states
 - Decimal 0 through 7
- No inputs
 - □ Transition on every clock edge
 - i.e., state changes on every clock edge
 - Assume clocked, synchronous flip-flops

October 31, 2006

ECE 152A - Digital Design Principles

23

Counter Design with T Flip-Flops

■ State Diagram

October 31, 2006

ECE 152A - Digital Design Principles

■ State table

	PS			NS	
Α	В	С	A ⁺	B ⁺	C+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

October 31, 2006

ECE 152A - Digital Design Principles

25

Counter Design with T Flip-Flops

Next State Maps

$$A^+ = AB' + AC' + A'BC = D_A$$

$$B^+ = B'C + BC' = D_B$$

$$C^+ = C' = D_C$$

October 31, 2006

ECE 152A - Digital Design Principles

- Using D flip-flops, inputs are derived directly from next state maps
 - □ D = Q+
- Using T flip flops
 - □ Excitation table (used for design)
 - T = Q XOR Q⁺
 - Need to find inputs to T flip-flops
 - Mapping state changes
 - \square Q \rightarrow Q+ requires T = ?

October 31, 2006

ECE 152A - Digital Design Principles

2

Counter Design with T Flip-Flops

- T Flip-Flop Excitation Table
 - □ T = Q XOR Q⁺

Q	Q ⁺	Т
0	0	0
0	1	1
1	0	1
1	1	0

October 31, 2006

ECE 152A - Digital Design Principles

■ State Variable A

$$\Box$$
 $T_A = A^+ (XOR) A$

October 31, 2006

ECE 152A - Digital Design Principles

29

Counter Design with T Flip-Flops

■ State Variable B

$$\Box$$
 T_B = B⁺ (XOR) B

October 31, 2006

ECE 152A - Digital Design Principles

■ State Variable C

$$T_C = C^+ (XOR) C$$

October 31, 2006

ECE 152A - Digital Design Principles

31

Counter Design with T Flip-Flops

- Implement design using T Flip-Flops with asynchronous preset and clear
 - Asynchronous preset (PRN) and clear (CLRN) override clock and other inputs
 - Preset : $Q \rightarrow 1$, Clear : $Q \rightarrow 0$
 - Used to initialize system (all flip-flops) to known state
 Bubbles indicate "low true" or "active low"

October 31, 2006

ECE 152A - Digital Design Principles

Schematic

October 31, 2006

ECE 152A - Digital Design Principles

33

Counter Design with T Flip-Flops

- Timing Diagram
 - □ QA toggles when B = C = 1
 - □ QB toggles when C = 1
 - □ QC toggles on every clock edge

October 31, 2006

ECE 152A - Digital Design Principles

■ State Diagram

October 31, 2006

ECE 152A - Digital Design Principles

35

Counter Design with JK Flip-Flops

■ State Table

	PS			NS	
Α	В	С	A ⁺	B ⁺	C+
0	0	0	1	0	0
0	0	1	Х	X	X
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	Х	X	X
1	1	0	Х	X	X
1	1	1	0	1	0

October 31, 2006

ECE 152A - Digital Design Principles

Next State Maps

$$A^{+} = B' = D_{A}$$

 $B^{+} = A + BC' = D_{B}$
 $C^{+} = AB' + BC' = D_{C}$

October 31, 2006

ECE 152A - Digital Design Principles

3

Counter Design with JK Flip-Flops

- JK Flip-Flop Excitation Table
 - □ Recall JK state diagram
 - Create excitation table from state diagram
 - $Q^+ = JQ' + K'Q$

October 31, 2006

ECE 152A - Digital Design Principles

ECE 152A - Digital Design Principles

39

October 31, 2006

