
1

Sequential Circuit Design
with Verilog

ECE 152A – Fall 2006

November 2, 2006 ECE 152A - Digital Design Principles 2

Reading Assignment

Brown and Vranesic
6 Combinational – Circuit Building Blocks

6.6 Verilog for Combinational Circuits
6.6.1 The Conditional Operator
6.6.2 The If-Else Statement
6.6.3 The Case Statement

2

November 2, 2006 ECE 152A - Digital Design Principles 3

Reading Assignment

Brown and Vranesic (cont)
7 Flip-Flops, Registers, Counters, and a Simple
Processor

7.12 Using Storage Elements with CAD Tools
7.12.2 Using Verilog Constructs for Storage Elements
7.12.3 Blocking and Non-Blocking Assignments
7.12.4 Non-Blocking Assignments for Combinational
Circuits
7.12.5 Flip-Flops with Clear Capability

7.13 Using Registers and Counters with CAD Tools
7.13.3 Using Verilog Constructs for Registers and Counters

November 2, 2006 ECE 152A - Digital Design Principles 4

The Gated D Latch

Transparent on high phase of clock

module D_latch(D, Clk, Q);
input D, Clk;
output Q;
reg Q;

always @(D or Clk)
if (Clk)

Q = D;
endmodule

3

November 2, 2006 ECE 152A - Digital Design Principles 5

The Gated D Latch

The “if” construct
When D or CLK change value:

if CLK = 1, set Q = D

Since there is no else, assignment occurs only
when CLK = 1

Q follows D when CLK = 1
Q remains latched on CLK = 0

“Always” construct triggered by change in value of
D or CLK

Either change can cause the output to change

November 2, 2006 ECE 152A - Digital Design Principles 6

The Gated D Latch

The “always” construct
Responds to changes in the signals on the
sensitivity list

always @ (D or Clk)

Example above is “level sensitive”
When D or Clk changes value

Make edge triggered by using Verilog keywords
posedge and negedge

i.e., always @ (posedge Clk)

4

November 2, 2006 ECE 152A - Digital Design Principles 7

The Edge Triggered D Flip-Flop

Positive edge triggered

module flipflop(D, Clock, Q);
input D, Clock;
output Q;
reg Q;

always @(posedge Clock)
Q = D; // Q+ = D, characteristic function

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 8

The Edge Triggered D Flip-Flop

D is not included on sensitivity list since it
cannot cause output (Q) to change

No transparent phase with edge triggered flip-
flops

Characteristic function used in assignment
statement

Defining next state (Q+) of the flip-flop

5

November 2, 2006 ECE 152A - Digital Design Principles 9

The Edge Triggered JK Flip-Flop

Assign characteristic function to Q on rising
clock edge (Q+ = JQ’ + K’Q)

module JKflipflop(J,K, Clock, Q);
input J,K, Clock;
output Q;
reg Q;

always @(posedge Clock)
Q = J && ~Q || ~K && Q; // Q+ = JQ' + K'Q

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 10

The Edge Triggered JK Flip-Flop

Functional Simulation

set hold reset hold toggle toggle

6

November 2, 2006 ECE 152A - Digital Design Principles 11

The Edge Triggered T Flip-Flop

Assign characteristic function to Q on rising
clock edge (Q+ = T XOR Q)

module Tflipflop(T, Clock, Q);
input T, Clock;
output Q;
reg Q;

always @(posedge Clock)
Q = T ^ Q; // Q = T XOR Q

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 12

The Edge Triggered T Flip-Flop

Functional Simulation

hold toggle hold toggle toggle hold

7

November 2, 2006 ECE 152A - Digital Design Principles 13

Blocking and Non-Blocking Assignments

Q = D
Equal sign (=) signifies a blocking assignment

Statements are evaluated in the order in
which they are written

If a variable is given a value by a blocking
assignment, the new value is used in evaluating
all subsequent statements in the block

November 2, 2006 ECE 152A - Digital Design Principles 14

Blocking and Non-Blocking Assignments

Blocking Assignment Statement Example

module example1(D, Clock, Q1, Q2);
input D, Clock;
output Q1, Q2;
reg Q1, Q2;

always @(posedge Clock)
begin

Q1 = D;
Q2 = Q1;

end

endmodule

8

November 2, 2006 ECE 152A - Digital Design Principles 15

Blocking and Non-Blocking Assignments

Example synthesizes two positive edge
triggered D flip-flops

Both flip-flops triggered by same clock edge
Both assignments in always block are
blocking

Q1 gets the value D
Q2 then gets the new value of Q1

Q1+, which is now D

November 2, 2006 ECE 152A - Digital Design Principles 16

Blocking and Non-Blocking Assignments

The synthesized circuit with blocking
assignment statements

9

November 2, 2006 ECE 152A - Digital Design Principles 17

Blocking and Non-Blocking Assignments

Non-Blocking Statements (<=)
Non-blocking assignment statements in an always
block are evaluated using the values of the
variables when the block is entered

always @(posedge Clock)
begin

Q1 <= D; // substitute
Q2 <= Q1; // non-blocking assignments

end

November 2, 2006 ECE 152A - Digital Design Principles 18

Blocking and Non-Blocking Assignments

Q2 gets the value of Q1 when the always
block is entered

The synthesized circuit with non-blocking
assignment statements

Flip-flops connected in cascade

10

November 2, 2006 ECE 152A - Digital Design Principles 19

Blocking and Non-Blocking Assignments

Blocking Assignment Statement Example

module example3(x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output f, g;
reg f, g;

always @(posedge Clock)
begin

f = x1 & x2;
g = f | x3;

end

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 20

Blocking and Non-Blocking Assignments

Both f and g are implemented as the outputs
of D flip-flops

Synthesized as flip-flops because the sensitivity
list of the always block specifies posedge Clock

“g” gets the new value (Q+) of “f” OR’d with x3

11

November 2, 2006 ECE 152A - Digital Design Principles 21

Blocking and Non-Blocking Assignments

The synthesized circuit
Blocking assignment statements

November 2, 2006 ECE 152A - Digital Design Principles 22

Blocking and Non-Blocking Assignments

If assignment statements changed to non-
blocking

always @(posedge Clock)
begin

f <= x1 & x2;
g <= f | x3;

end

“g” gets the previous value of “f” (the value
when the always block is entered, i.e., Q)

12

November 2, 2006 ECE 152A - Digital Design Principles 23

Blocking and Non-Blocking Assignments

The synthesized circuit
Non-blocking assignment statements

November 2, 2006 ECE 152A - Digital Design Principles 24

Blocking and Non-Blocking Assignments

General Rule
The results of non-blocking assignments are
visible only after all of the statements in the
always block have been evaluated
When there are multiple assignments to the same
variable inside an always block, the result of the
last assignment is maintained

13

November 2, 2006 ECE 152A - Digital Design Principles 25

Flip-Flops with Clear

Asynchronous Clear

module flipflop(D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 26

Flip-Flops with Clear

Synchronous Clear

module flipflop(D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(posedge Clock)
if (!Resetn) // check value of reset on clock edge

Q <= 0;
else

Q <= D;

endmodule

14

November 2, 2006 ECE 152A - Digital Design Principles 27

4-Bit Binary Counter

Counter includes reset and enable
module upcount(Resetn, Clock, E, Q);

input Resetn, Clock, E;
output [3:0] Q;
reg [3:0] Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0; // asynchronous reset overrides enable
else if (E)

Q <= Q + 1; // synthesizes adder circuit

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 28

4-Bit Binary Counter

Functional Simulation

asynchronous
reset

enable
count

reset enable

15

November 2, 2006 ECE 152A - Digital Design Principles 29

Finite State Machine (FSM) Design

Recall state diagram for JK flip-flop counter
from previous lecture

100 111

011

000

010

November 2, 2006 ECE 152A - Digital Design Principles 30

Finite State Machine (FSM) Design

The State Table

010111
XXX011
XXX101
111001
000110
110010

XXX100
001000

C+B+A+CBA
NSPS

16

November 2, 2006 ECE 152A - Digital Design Principles 31

Finite State Machine (FSM) Design

Can’t use addition operator because
sequence is not binary count

See previous example
Use parameter statement to define states

parameter [2:0] A = 3'b000, B = 3'b100, C = 3'b111,
D = 3'b010, E = 3'b011;

November 2, 2006 ECE 152A - Digital Design Principles 32

Finite State Machine (FSM) Design

Use case statement to implement state
transitions

always @ (posedge clock)
case(count)

A: count <= B;
B: count <= C;
C: count <= D;
D: count <= E;
E: count <= A;
default: count <= A;

endcase

17

November 2, 2006 ECE 152A - Digital Design Principles 33

Finite State Machine (FSM) Design

The complete module
module jk_counter(count, clock);

input clock;
output [2:0] count;

reg [2:0] count;
parameter [2:0] A = 3'b000, B = 3'b100, C = 3'b111,

D = 3'b010, E = 3'b011;

always @ (posedge clock)
case(count)

A: count <= B;
B: count <= C;
C: count <= D;
D: count <= E;
E: count <= A;
default: count <= A;

endcase

endmodule

November 2, 2006 ECE 152A - Digital Design Principles 34

Finite State Machine (FSM) Design

Functional Simulation

000 100 111 010 011 000 100

