Sequential Circuit Design with Verilog

ECE 152A - Fall 2006

The Edge	Triggered D Flip-Flop	
 Positive ec 	lge triggered	
module f	lipflop(D, Clock, Q);	
input	D, Clock;	
outpu	at Q;	
reg Ç);	
alwa	ys @(posedge Clock)	
Q =	D; // $Q^+ = D$, characteristic function	
endmodu	ıle	
November 2, 2006	ECE 152A - Digital Design Principles	7

Blocking and Non-Blocking Assignments			
 Blocking A 	Assignment Statement Example		
mod	ule example3(x1, x2, x3, Clock, f, g);		
i	nput x1, x2, x3, Clock;		
C	output f, g;		
r	eg f, g;		
a	lways @(posedge Clock)		
b	begin		
	f = x1 & x2;		
	$g = f \mid x3;$		
e	nd		
endn	nodule		
November 2, 2006	ECE 152A - Digital Design Principles	19	

Flip-F	lops with Clear	
■ Asyno	chronous Clear	
	module flipflop(D, Clock, Resetn, O);	
	input D, Clock, Resetn;	
	output Q;	
	reg Q;	
	always @(negedge Resetn or posedge Clock)	
	$\Omega < -0$	
	else	
	Q <= D;	
	endmodule	
November 2, 2006	ECE 152A - Digital Design Principles	25

Finite State Machine (FSM) Design				
■ The c	omplete module			
	module jk_counter(count, clock);			
	input clock; output [2:0] count;			
	reg [2:0] count: parameter [2:0] A = 3'b000, B = 3'b100, C = 3'b111, D = 3'b010, E = 3'b011;			
	always @ (posedge clock) case(count) A: count <= B; B: count <= C; C: count <= D; D: count <= E; E: count <= A; default: count <= A; endcase			
	endmodule			
November 2, 2006	ECE 152A - Digital Design Principles	33		

