Karnaugh Maps \&
 Combinational Logic Design

ECE 152A - Fall 2006

Reading Assignment

- Brown and Vranesic
a 4 Optimized Implementation of Logic Functions
- 4.1 Karnaugh Map
- 4.2 Strategy for Minimization
- 4.2.1 Terminology
- 4.2.2 Minimization Procedure
- 4.3 Minimization of Product-of-Sums Forms
- 4.4 Incompletely Specified Functions
- 4.8 Cubical Representation
- 4.8.1 Cubes and Hypercubes

Reading Assignment

- Roth
- 1 Introduction Number Systems and Conversion
- 1.4 Representation of Negative Numbers
- 1.5 Binary Codes
- 4 Applications of Boolean Algebra Minterm and Maxterm Expansions
- 4.5 Incompletely Specified Functions

Reading Assignment

- Roth (cont)
- 5 Karnaugh Maps
- 5.1 Minimum Forms of Switching Functions
- 5.2 Two- and Three-Variable Karnaugh Maps
- 5.3 Four-Variable Karnaugh Maps
- 5.4 Determination of Minimum Expressions Using Essential Prime Implicants
- 5.5 Five-Variable Karnaugh Maps

Canonical Forms

- The canonical Sum-of-Products (SOP) and Product-of-Sums (POS) forms can be derived directly from the truth table but are (by definition) not simplified
- Canonical SOP and POS forms are "highest cost", two-level realization of the logic function
- The goal of simplification and minimization is to derive a lower cost but equivalent logic function

Simplification

- Reduce cost of implementation by reducing the number of literals and product (or sum) terms
- Literals correspond to gate inputs and hence both wires and the size (fan-in) of the first level gates in a two-level implementation
- Product (Sum) terms correspond to the number of gates in the first level of a two-level
implementation and the size (fan-in) of the second level gate

Simplification

- Algebraic Simplification
- Using theorems and properties of Boolean Algebra
- Difficult with large number of variables and complex Boolean expressions
- Most often incorporated into CAD Tools
- Karnaugh Maps
- Graphical representation of logic function suitable for manual simplification and minimization

Two-Variable Karnaugh Map

- Location of minterms and maxterms on a two-variable map
- Index is the same, expansion is complementary

Two-Variable Karnaugh Map

- Simplification using $x y+x y^{\prime}=x$ and $x+x^{\prime} y=x+y$
- $\mathrm{F}=\Sigma \mathrm{m}(0,2,3)$

$$
\begin{aligned}
& F=A^{\prime} B^{\prime}+A B^{\prime}+A B \\
& F=B^{\prime}\left(A^{\prime}+A\right)+A B \\
& F=B^{\prime}+A B \\
& F=\left(B^{\prime}+A\right)\left(B^{\prime}+B\right) \\
& F=B^{\prime}+A
\end{aligned}
$$

Three-Variable Karnaugh Map

- Location of three-variable minterms

Three-Variable Karnaugh Map

- Adjacent cells differ in the value of only one variable
- Known as Gray coding
- Topological adjacency equates to algebraic adjacency

$$
\begin{gathered}
000 \rightarrow 001 \rightarrow 011 \rightarrow 010 \\
\uparrow \begin{array}{c}
\downarrow \\
100
\end{array} \leftarrow 101 \leftarrow 111 \leftarrow 110
\end{gathered}
$$

Three-Variable Karnaugh Map

- Three Variable Sum-of-Products Simplification
- Groupings of $4\left(2^{2}\right)$

$$
\begin{aligned}
& F=A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C^{\prime} \\
& F=\left(A^{\prime}+A\right) B^{\prime} C^{\prime}+\left(A^{\prime}+A\right) B C^{\prime} \\
& F=B^{\prime} C^{\prime}+B C^{\prime} \\
& F=\left(B^{\prime}+B\right) C^{\prime} \\
& F=C^{\prime}
\end{aligned}
$$

Three-Variable Karnaugh Map

- Three Variable Product-of-Sums Simplification - Groupings of $4\left(2^{2}\right)$

Four-Variable Karnaugh Map

- Location of four-variable minterms

Four-Variable Karnaugh Map

- Four-bit Gray code

$$
\left.\begin{array}{c}
0000 \rightarrow 0001 \rightarrow 0011 \rightarrow 0010 \\
\downarrow \\
0100 \leftarrow 0101 \leftarrow 0111 \leftarrow 0110 \\
\downarrow \\
1100 \rightarrow 1101 \rightarrow 1111 \rightarrow \\
\\
\leftarrow
\end{array}\right)
$$

Four-Variable Sum-of-Products Map

Implementation with AND/OR/NOT \& NAND gates

Four-Variable Product-of-Sums Map

Algebraic conversion between SOP and POS forms

- Multiplying out
- POS \rightarrow SOP

$$
\begin{aligned}
& F=\left(A+B^{\prime}\right)(A+C)(A+D) \\
& A+B^{\prime} \\
& \frac{A+C}{A A+A B^{\prime}} \\
& \frac{A C+B^{\prime} C}{A+A B^{\prime}+A C+B^{\prime} C} \\
& A+B^{\prime} C \\
& \frac{A+D}{A A+A B^{\prime} C+A D+B^{\prime} C D} \\
& F= A+B^{\prime} C D
\end{aligned}
$$

- Factoring
- SOP \rightarrow POS
$\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{CD}$
$F=\left(A+B^{\prime}\right)(A+C D)$
$F=\left(A+B^{\prime}\right)(A+C)(A+D)$

Five-Variable Karnaugh Maps

Six-Variable Karnaugh Map

Terminology

- Literal
- An appearance of a variable or its complement - Implicant
- Any minterm and/or product term for which the value of the function equals 1 (in SOP form) or any maxterm and/or sum term for which the value of the function equals 0 (in POS form)

Terminology

- Prime Implicant
- An implicant that cannot be combined into another implicant that has fewer literals
- Essential Prime Implicant
- A prime implicant that includes at least one minterm not covered by any other prime implicant

Terminology

- Cover
- A collection of implicants that accounts for (covers) all minterms (or maxterms) for which a given function equals 1 in SOP form (or 0 in POS form)
- Cost
- An heuristic figure of merit determined generally from the number of product (sum) terms and the number of literals in a given cover

Minimization Procedure

- Generate all prime implicants for the given function
- Find the set of all essential prime implicants
- If the set of essential prime implicants covers the function, this set is the desired cover
- Otherwise, determine the nonessential prime implicants that should be added to form a complete, minimal cost cover

Minimization Example

10 Implicants (minterms) 6 Prime Implicants $B C^{\prime}, A B, A C$, $B^{\prime} C D, A^{\prime} B^{\prime} D, A^{\prime} C^{\prime} D$ 2 Essential Prime Implicants BC', AC
Final Cover with $A^{\prime} B^{\prime} D$

$$
F=A^{\prime} B^{\prime} D+B C^{\prime}+A C
$$

Combinational Logic Circuit Design

- Specify combinational function using
- Truth Table,
- Karnaugh Map, or
- Canonical sum of minterms (product of maxterms)
- This is the creative part of digital design
- Design specification may lend itself to any of the above forms

Combinational Logic Circuit Design

- Find minimal POS or SOP form of the logic function
- Technology can determine whether POS or SOP is appropriate solution
- Nature of function and cost of implementation can determine whether POS or SOP is better solution

Combinational Logic Circuit Design

- Implement design using AND/OR (or NAND) gates or OR/AND (or NOR) gates
- In most technologies NAND and NOR implementations are superior
- In terms of both size and speed
- Simulate design and verify functionality and performance
- Design should always be verified before committing to fabrication

Combinational Design Example 1

- Design Specification
- Design a logic network that takes as its input a 4bit, one's complement number and generates a 1 if that number is odd (0 is not odd)
- Label the inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , where A is the most significant bit
- Implement your design in standard sum-ofproducts representation using only NAND gates

Combinational Design Example 1

- Recall representation of fixed-point, signed and unsigned numbers from ECE 15A (lecture \#14)

Binary	Unsigned	Sign- Magnitude	One's Complement	Two's Complement
000	0	+0	+0	0
001	1	1	1	1
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-1

Design Example 1 - Truth Table

- Odd, One’s complement
numbers

A	B	C	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Design Example 1 - Karnaugh Map

00		01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	1

$$
F=A^{\prime} D+A D^{\prime}
$$

Incompletely Specified Functions

- Some logic functions have input combinations that can never occur
- Examples:
- Sensors indicating a mutually exclusive event has occurred
- Processor flags indicating a result was both positive and negative
- Interlocked switches that can never be closed at the same time

Incompletely Specified Functions

- Conditions called "don't cares"

- For minterms/maxterms associated with "don't care" input combinations, assign output value of 0 or 1 to generate the minimum cost cover
- On Karnaugh Map, represent "don't cares" with X and group with minterms (maxterms) to create prime implicants
- Any X's not covered can be ignored and will default to 0 (in SOP form) or 1 (in POS form)

Design Example 2

- Design Specification
- Design a combinational circuit that takes as its input a Binary Coded Decimal (BCD) digit (four bits) and outputs a 1 if the input is an even number (not zero)
- Recall Binary Coded Decimal representation from ECE 15A
- Not most economical representation
- 10 valid combinations per 4 bits
- 100 valid combinations per byte

Design Example 2

- BCD Example

BCD	Value	BCD	Value
0000	0	1000	8
0001	1	1001	9
0010	2	1010	X
0011	3	1011	X
0100	4	1100	X
0101	5	1101	X
0110	6	1110	X
0111	7	1111	X

Design Example 2

- Canonical Forms for Incompletely Specified Functions
- For design example, function determined directly from design specification
- Even numbers, not 0

$$
\begin{aligned}
& \sum m(2,4,6,8)+d(10,11,12,13,14,15) \\
& \prod M(0,1,3,5,7,9) \bullet d(10,11,12,13,14,15)
\end{aligned}
$$

Design Example 2 - SOP Karnaugh Map

Design Example 2 - POS Karnaugh Map

Design Example 3

- Design Specification

- In this problem, you are to design the combinational circuit that controls the ceiling lights in my downstairs hallway
- There are three wall switches: one at the front door (A), one at the back door (B) and one in the family room (C)
- When I walk in the front door, the ceiling lights are off, the A switch is ON and both the B and C switches are OFF
- From these initial conditions, changing the position of any switch should turn the lights on; changing the position of any switch (again) should turn the lights off, etc.

Design Example 3 - Karnaugh Map

Initial Conditions:
$A=1, B=0, C=0$ and $F=0$
Changing the position of any switch causes the light to come on

Changing the position of any switch again causes the light to go off

And finally...

$$
F=A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A^{\prime} B C+A B C^{\prime}=X N O R(A, B, C)
$$

Design Example Review

- From Design Specification to Implementation:
- Example 1
- Generate truth table from specification
- Example 2
- Generate sum of minterms (product of maxterms) from specification
- Example 3
- Generate Karnaugh map from specification

