
15 STATE MACHINES

STATE MACHINE TYPES

There are two types of state machines: Mealy machines and Moore machines. You
can model both types of machines in Verilog. The difference between Mealy and
Moore machines is in how outputs are generated. In a Moore machine, the outputs
are a function of the current state. This implies that the outputs from the Moore
machine are synchronous to the state changes. In a Mealy machine, the outputs are
a function of both the state and the inputs.

A state machine can be broken down into three parts: The state register, the next-
state logic, and the output logic.

A state machine can be depicted as shown in Figure 15-1.

170 Verilog Quickstart

Figure 15-1 can be modified to bring the inputs through to the output logic, thus
creating a Mealy state machine, as shown in Figure 15-2.

To model a state machine in Verilog, you must model each of the three parts of the
state machine.

State Machines 171

STATE MACHINE MODELING STYLE

Because a state machine is made up of three parts, you have a choice whether to
model each section independently, or to try to combine the parts into one section of
the model.

Table 15-1 shows some interesting combinations:

In the first style, each of the functional blocks is modeled in a separate always
block. The state register logic is modeled as an always block, and the next-state
logic and output logic are separate always blocks, representing combinatorial logic.
Because the output section can be modeled as either sensitive only to changes on
state or also sensitive to changes on inputs, you can use this to model both Mealy
and Moore machines. This style is the most modular; it may take a few more lines
of Verilog code, though it may be the easiest to maintain.

The second style combines the next-state logic and the state register. This style is a
good style to use because the next-state logic and state register are strongly related.
This style is more compact than the first, and may even be more efficient because
the next-state logic is only evaluated on clock edges, rather than whenever an input
changes. If your state machine has many inputs that change frequently, this may be
a better style to use than the first. This style has the output as a separate section so
you can use this style to model both Mealy and Moore machines.

The third style leaves the state register in a separate always block, while combining
the next-state logic and the output logic. Because the next-state logic and the output
logic may be combinatorial, combining them still allows for modeling both Mealy
and Moore machines. However, this grouping does not tend to help the readability
of your code; styles 1 and 2 are easier to model and maintain.

The fourth style combines everything into one always block. The always block is
sensitive only to the clock for the state register, so this implies the outputs only
change with the state. Thus this style will only create Moore machines.

172 Verilog Quickstart

The fifth and final style combines the state register and output logic into one always
block, so again, this only creates Moore machines.

To demonstrate all these styles, with Moore and Mealy variations on them, we will
use a simple example. This example won’t be the traffic light controller, vending
machine, or a completely trivial state machine, but instead an automatic food
cooker. This cooker has a supply of food that it can load into its heater when
requested. The cooker then unloads the food when the cooking is done.

Besides clock, the inputs to this state machine are start (which starts a
load/cook/unload cycle); temp_ok (a temperature sensor that detects when the heater
is done preheating); done (a signal from a timer or sensor that detects when the
cooking cycle is complete); and quiet (a final input that selects if the cooker should
beep when the food is ready).

The outputs from the machine are load (a signal that sends food into the cooker);
heat (a signal that turns on the heating element, which has its a built-in temperature
control); unload (a signal that removes the food from the cooker and presents it to
the diner); and beep (a signal that alerts the diner when the food is done).

State Machines 173

Example 15-1 Style 1 Moore State Machine

module auto_oven_style_1_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state, next_state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock)

state <= #(`REG_DELAY) next_state;
// next state logic
always @(state or start or temp_ok or done) begin
next_state = state; // default to stay in current state
case (state)

`IDLE: if (start) next_state=`PREHEAT;
`PREHEAT: if(temp_ok) next_state = `LOAD;
`LOAD: next_state = `COOK;
`COOK: if (done) next_state=`EMPTY;
`EMPTY: next_state = `IDLE;
default: next_state = `IDLE;

endcase
end

// Output logic
always @(state) begin

if(state == `LOAD) load = 1; else load = 0;
if(state == `EMPTY) unload =1; else unload = 0;
if(state == `EMPTY && quiet == 0) beep =1; else beep = 0;
if(state == `PREHEAT ||

state == `LOAD ||
state == `COOK) heat = 1; else heat =0;

end
endmodule

In style 1, as shown in Example 15-1, each section of the state machine is modeled
with a separate always block. Style 1 can be used to represent either a Moore
machine or a Mealy machine for our automatic oven. The difference between the
two styles is seen in the different behavior of the quiet input and beep output. With
the Moore machine the diner must wait through the entire EMPTY state for the
beeper to be quiet. The Mealy version of this is for those diners who want the beeper
to sound, and then jump up to turn it off, as shown in Example 15-2.

174 Verilog Quickstart

Example 15-2 Style 1 Mealy State Machine

module auto_oven_style_1_mealy(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state, next_state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock)
state <= #(`REG_DELAY) next_state;

// next state logic
always @(state or start or temp_ok or done) begin
next_state = state; // default to stay in current state
case (state)

`IDLE: if (start) next_state=`PREHEAT;
`PREHEAT: if(temp_ok) next_state = `LOAD;
`LOAD: next_state = `COOK;
`COOK: if (done) next_state=`EMPTY;
`EMPTY: next_state = `IDLE;
default: next_state = `IDLE;

endcase
end

// Output logic
always @(state or quiet) begin

if(state == `LOAD) load = 1; else load = 0;
if(state == `EMPTY) unload =1; else unload = 0;
if(state == `EMPTY && quiet == 0) beep =1; else beep = 0;
if(state == `PREHEAT ||

state == `LOAD ||
state == `COOK) heat = 1; else heat =0;

end
endmodule

Style 2 can also be used to express both Moore and Mealy machines. Example 15-3
and Example 15-4 are just slightly shorter because the next-state logic and register
are combined into one block of code. This also eliminates the need for the
next_state temporary variable.

Example 15-3 Style 2 Moore Machine

module auto_oven_style_2_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

State Machines 175

output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock)begin

case (state)
`IDLE: if (start) state=`PREHEAT;
`PREHEAT: if(temp_ok) state <= #(`REG_DELAY) `LOAD;
`LOAD: state <= #(`REG_DELAY) `COOK;
`COOK: if (done) state=`EMPTY;
`EMPTY: state <= #(`REG_DELAY) `IDLE;
default: state <= #(`REG_DELAY) `IDLE;

endcase
end
// Output logic
always @(state) begin

if(state == `LOAD) load = 1; else load = 0;
if(state == `EMPTY) unload =1; else unload = 0;
if(state == `EMPTY && quiet == 0) beep =1; else beep = 0;
if(state == `PREHEAT ||

state == `LOAD ||
state == `COOK) heat = 1; else heat =0;

end
endmodule

Example 15-4 Style 2 Mealy Machine

module auto_oven_style_2_mealy(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock)begin
case (state)

`IDLE: if (start) state=`PREHEAT;
`PREHEAT: if(temp_ok) state <= #(`REG_DELAY) `LOAD;
`LOAD: state <= #(`REG_DELAY) `COOK;
`COOK: if (done) state=`EMPTY;

176 Verilog Quickstart

`EMPTY: state <= #(`REG_DELAY) `IDLE;
default: state <= #(`REG_DELAY) `IDLE;

endcase
end
// Output logic
always @(state or quiet) begin

if(state == `LOAD) load = 1; else load = 0 ;
if(state == `EMPTY) unload =1; else unload = 0;
if(state == `EMPTY && quiet == 0) beep =1; else beep = 0;
if(state == `PREHEAT ||

state == `LOAD |
state == `COOK) heat = 1; else heat =0;

end
endmodule

Style 3 combines the next-state logic and output logic. In Example 15-5, this
modeling will result in a Mealy machine. It is possible to use this style to describe a
Moore machine.

Example 15-5 Style 3 Mealy Machine

module auto_oven_style_3_mealy(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state, next_state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock)

state <= #(`REG_DELAY) next_state;

// next state logic
always @(state or start or temp_ok or done or quiet) begin
next_state = state; // default to stay in current state
case (state)

`IDLE: if (start) next_state=`PREHEAT;
`PREHEAT: if(temp_ok) next_state = `LOAD;
`LOAD: next_state = `COOK;
`COOK: if (done) next_state=`EMPTY;
`EMPTY: next_state = `IDLE;
default: next_state = `IDLE;

endcase

//output logic
if(state == `LOAD) load = 1; else load = 0;

State Machines 177

if(state == `EMPTY) unload =1; else unload = 0;
if(state == `EMPTY && quiet == 0) beep =1; else beep = 0;
if(state == `PREHEAT ||

state == `LOAD ||
state == `COOK) heat = 1; else heat =0;

end

endmodule

Style 4 combines everything into one big block, which yields a Moore machine.

Example 15-6 Style 4 Moore Machine

module auto_oven_style_4_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock)begin
case (state)

`IDLE: if (start) state=`PREHEAT;
`PREHEAT: if(temp_ok) state <= #(`REG_DELAY) `LOAD;
`LOAD: state <= #(`REG_DELAY) `COOK;
`COOK: if (done) state=`EMPTY;
`EMPTY: state <= #(`REG_DELAY) `IDLE;
default: state <= #(`REG_DELAY) `IDLE;

endcase
if(state == `LOAD) load <= #(`REG_DELAY) 1;
else load <= #(`REG_DELAY) 0;

if(state == `EMPTY) unload <= #(`REG_DELAY) 1;
else unload <= #(`REG_DELAY) 0;

if(state == `EMPTY && quiet == 0) beep <= #(`REG_DELAY) 1;
else beep <= #(`REG_DELAY) 0;

if(state == `PREHEAT ||
state == `LOAD ||
state == `COOK) heat <= #(`REG_DELAY) 1;
else heat <= #(`REG_DELAY) 0;

end
endmodule

Style 5 combines the state register and output sections, and results in either a Moore
machine or registered outputs.

178 Verilog Quickstart

Example 15-7 Style 5 Moore Machine

module auto_oven_style_5_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);
input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state, next_state;
`define IDLE 'b000
`define PREHEAT 'b001
`define LOAD 'b010
`define COOK 'b011
`define EMPTY 'b100

// State register block
always @(posedge clock) begin

state <= #(`REG_DELAY) next_state;
// Output logic
if(state == `LOAD) load <= #(`REG_DELAY) 1;
else load <= #(`REG_DELAY) 0;

if(state == `EMPTY) unload <= #(`REG_DELAY) 1;
else unload <= #(`REG_DELAY) 0;

if(state == `EMPTY && quiet == 0) beep <= #(`REG_DELAY) 1;
else beep <= #(`REG_DELAY) 0;

if(state == `PREHEAT ||
state == `LOAD ||
state == `COOK) heat <= #(`REG_DELAY) 1;
else heat <= #(`REG_DELAY) 0;

end

// next state logic
always @(state or start or temp_ok or done) begin
next_state = state; // default to stay in current state
case (state)

`IDLE: if (start) next_state=`PREHEAT;
`PREHEAT: if(temp_ok) next_state = `LOAD;
`LOAD: next_state = `COOK;
`COOK: if (done) next_state=`EMPTY;
`EMPTY: next_state = `IDLE;
default: next_state = `IDLE;

endcase
end

endmodule

With all of these styles to choose from, which one is best? Which one will result in
the smallest synthesized circuit? These are not easy questions to answer. Style 2 is
both compact and allows for both Mealy and Moore machines, so this is a good all-
around style to use. As for synthesized results, state encoding will have a greater
effect on ultimate size than any of these variations in style.

State Machines 179

STATE ENCODING METHODS

State encoding can have a great effect on circuit size and performance, and can also
influence the amount of glitching produced by a circuit. With all that said, you
should note that most synthesis tools can encode or re-encode states.

The state encoding used in the previous examples is a simple sequential numbering,
as shown in Table 15-2.

A common sense approach to state encoding might be to assume that the heat
output needs to be on for the states PREHEAT, LOAD, and COOK. So the states
could be encoded with one of the bits set for all of those states. This would have the
effect of simplifying the output logic. The heat output is now simplified to state[2].

Another approach that may minimize glitching is to “Gray code” the state
encoding. “Gray code” is another method of binary counting; in Gray code during
each transition, only one bit changes. This is easy for some state machines and
difficult or impossible for state machines that branch in many directions. For the
automatic oven, we could encode the states as shown in Table 15-4.

180 Verilog Quickstart

In this encoding between each state, only one bit changes (either sets or clears). The
only transition in this model that violates this Gray code rule is the transition from
EMPTY to IDLE, during which two of the bits clear.

For each of the encodings shown in Table 15-2, Table 15-3, and Table 15-4, only
three flip-flops are used to encode the states. Because the state machine has five
states, the minimum number of flip-flops to use is three. If you are not concerned
about using the minimum number of flip-flops, there are other encodings you can
use.

If you want to get the outputs out as quickly as possible, we can re-encode the states
to an encoding of output = state. To start the output = state encoding, let’s look at
all the states in reference to the outputs, as shown in Table 15-5.

Now we can add a state encoding to Table 15-5, yielding the data in Table 15-6.

State Machines 181

This state encoding has a bit for each output and extra bits for states that do not
have unique outputs. The states PREHEAT and COOK both have the same outputs,
so they need to have two different encodings. The last bit, used for the BEEP output,
can be removed for optimization since it is the same as UNLOAD. This method of
encoding uses four or five flip-flops, so it yields a larger circuit than do the other
encoding methods.

A final state encoding method is called “one-hot.” In this encoding method there is
exactly one flip-flop set per state. This method may take even more flip-flops, but
can sometimes produce faster circuits. One-hot state encoding is shown in Table 15-
7.

Which state encoding is best for a particular design depends on your design goals.
Does the design need to be fast or small? Is glitching a concern? Is simultaneous
switching a concern for power and glitching? These are the questions that most
influence the choice of a state encoding.

DEFAULT CONDITIONS

Each of the state machine examples included a default clause. Those examples used
3 bits for state, but only five states were used. Thus it may be possible for the state
machine to glitch into one of the three remaining illegal states. One other reason for

182 Verilog Quickstart

including the default clause is that when simulation starts, the state machine is in
an unknown state, and the default clause gets it on track with the first clock.

The default clause may cause synthesis to generate more logic, so a trade-off must
be made between the security of having a default clause and the potential size
savings of not having it.

IMPLICIT STATE MACHINES

In all of the previous state machine examples, the three sections of the state
machine were obvious (or explicit) in the coding style. The automatic oven design
could also be coded as an implicit state machine. This style can be easier to code
and maintain in an abstract model. In this style, only the behavior of the state
machine is seen. The values of the outputs can also be seen, but the state register
and next-state logic are implied.

Example 15-8 Implicit State Machine Style

module auto_oven_implicit(clock, start, temp_ok, done, quiet,
load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;
output load, heat, unload, beep;
reg load, heat, unload, beep;
initial begin // set all outputs to the off state

load = 0;
heat = 0;
unload = 0;
beep = 0;

end

always begin
@(posedge clock) ; //stay IDLE at least one clock
while(! start) @(posedge clock) ;

// do nothing until a start
heat =1 ; // turn on heating element
load = 1;
@(posedge clock) ; //stay PREHEAT at least one clock
while(! temp_ok) @(posedge clock) ; // wait to heat up
load = 1;
@(posedge clock) load = 0;
@(posedge clock) ;

// stay in COOK at least one clock cycle
while(! done) @(posedge clock) ;

// wait to finish cooking
heat = 0;
unload = 1;
if (! quiet) beep = 1;
@(posedge clock) unload = 0;

State Machines 183

beep =0;
end
endmodule

You have also already seen two other examples of implicit state machines. In
chapter 6, when introducing the looping constructs, the modules shift1 and
onecount were simple, synthesizable implicit state machines.

REGISTERED AND UNREGISTERED OUTPUTS

The modeling of the output section of the state machine may infer that the outputs
are either registered, or combinatorial. Registered outputs are available sooner after
the clock and are less subject to glitching. One great disadvantage of registered
outputs is that the machine becomes larger due to the extra flip-flops. Because the
outputs are synchronous, this implies that machines with registered outputs are only
Moore machines. Changing the Verilog for the output section to be registered
instead of combinatorial is a simple matter of changing the always block to execute
only on a clock, rather than a change on any input.

Example 15-9 Combinatorial Outputs

always @(state or quiet) begin
if(state == `LOAD) load = 1; else load = 0;
if(state == `EMPTY) unload = 1; else unload = 0;
if(state == `EMPTY && quiet == 0) beep = 1; else beep = 0 ;
if(state == `PREHEAT ||

state == `LOAD ||
state == `COOK) heat = 1; else heat =0;

end
endmodule

Example 15-10 Registered Outputs

always @(posedge clock) begin
if(state == ` LOAD)
load <= #(` REG_DELAY) 1;

else
load <= #(` REG_DELAY) 0;

if(state == ` EMPTY)
unload <= #(` REG_DELAY) 1;

else
unload <= #(` REG_DELAY) 0;

if(state == ` EMPTY && quiet == 0)
beep <= #(`REG_DELAY) 1;

else

184 Verilog Quickstart

beep <= #(` REG_DELAY) 0;
if(state == ` PREHEAT ||

state == ` LOAD ||
state == `COOK)

heat <= #(`REG_DELAY) 1;
else
heat <= #(`REG_DELAY) 0;

end
endmodule

Example 15-10 will produce its outputs delayed by one clock. This may work for
some machines, but it may make others out of sync.

Since it is highly desirable to have registered outputs for high speed machines or to
eliminate glitching, a modified Moore machine may be used to create registered
outputs in sync with the state machine.

The modified Moore machine allows for registered outputs as shown in Example
15-11.

State Machines 185

Example 15-11 Modified Moore Machine with Registered Outputs

always @(posedge clock) begin
if(next_state == ` LOAD)
load <= #(` REG_DELAY) 1;

else
load <= #(` REG_DELAY) 0;

if(next_state == ` EMPTY)
unload <= #(` REG_DELAY) 1;

else
unload <= #(` REG_DELAY) 0;

if(next_state == ` EMPTY && quiet == 0)
beep <= #(` REG_DELAY) 1;

else
beep <= #(` REG_DELAY) 0;

if(next_state == ` PREHEAT |
next_state == ` LOAD |
next_state == ` COOK)
heat <= #(` REG_DELAY) 1;

else
heat <= #(` REG_DELAY) 0;

end
endmodule

FACTORS IN CHOOSING A STATE MACHINE MODELING STYLE

There are many ways to model a state machine. How do you know which style to
use and how to encode your states? There are a number of different goals you may
have for your state machine: Maximum frequency, area, clock-to-output delay,
glitch-free outputs, minimal input setup time, minimum simultaneous switching,
minimal power, or ease of maintenance. Each of these goals dictates a different style
or encoding method.

For a state machine to have the highest possible frequency, the next-state logic must
be as small as possible. In a logic type such as CMOS (where AND gates are fast),
one-hot encoding may generate the fastest next-state logic because each state bit is
usually set from the outputs of only AND gates. In other state encodings, there tend
to be AND/OR networks driving each state bit.

For minimal clock-to-output delay, a state machine where the outputs come directly
from flip-flops is best. The output-equals-state encoding or registered output style
state machines both have outputs that come directly from flip-flops, making either
of these styles the best choices for state machines requiring fast clock-to-output
times.

186 Verilog Quickstart

For minimal simultaneous switching and minimal power in CMOS, a state machine
with the states Gray-coded might be the best solution. The Gray-coded state
machines only change 1 bit per transition.

If the state machine is visualized as a flow, the implicit state machine makes it easy
to model and maintain. Inserting or removing behavior from this type of state
machine is easiest.

If high speed or glitch free outputs are desired, a style 1 modified Moore Machine
may be the best choice.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

